| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcopex.1 |  |-  T e. LinOp | 
						
							| 2 |  | nmcopex.2 |  |-  T e. ContOp | 
						
							| 3 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 4 | 3 | a1i |  |-  ( A = 0h -> 0 <_ 0 ) | 
						
							| 5 |  | fveq2 |  |-  ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) | 
						
							| 6 | 1 | lnop0i |  |-  ( T ` 0h ) = 0h | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( A = 0h -> ( T ` A ) = 0h ) | 
						
							| 8 | 7 | fveq2d |  |-  ( A = 0h -> ( normh ` ( T ` A ) ) = ( normh ` 0h ) ) | 
						
							| 9 |  | norm0 |  |-  ( normh ` 0h ) = 0 | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( A = 0h -> ( normh ` ( T ` A ) ) = 0 ) | 
						
							| 11 |  | fveq2 |  |-  ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) | 
						
							| 12 | 11 9 | eqtrdi |  |-  ( A = 0h -> ( normh ` A ) = 0 ) | 
						
							| 13 | 12 | oveq2d |  |-  ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` T ) x. 0 ) ) | 
						
							| 14 | 1 2 | nmcopexi |  |-  ( normop ` T ) e. RR | 
						
							| 15 | 14 | recni |  |-  ( normop ` T ) e. CC | 
						
							| 16 | 15 | mul01i |  |-  ( ( normop ` T ) x. 0 ) = 0 | 
						
							| 17 | 13 16 | eqtrdi |  |-  ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = 0 ) | 
						
							| 18 | 4 10 17 | 3brtr4d |  |-  ( A = 0h -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( A e. ~H /\ A = 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) | 
						
							| 20 |  | normcl |  |-  ( A e. ~H -> ( normh ` A ) e. RR ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) | 
						
							| 22 |  | normne0 |  |-  ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) | 
						
							| 23 | 22 | biimpar |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) | 
						
							| 24 | 21 23 | rereccld |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) | 
						
							| 25 |  | normgt0 |  |-  ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) | 
						
							| 27 | 21 26 | recgt0d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) | 
						
							| 28 |  | 0re |  |-  0 e. RR | 
						
							| 29 |  | ltle |  |-  ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) | 
						
							| 30 | 28 29 | mpan |  |-  ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) | 
						
							| 31 | 24 27 30 | sylc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) | 
						
							| 32 | 24 31 | absidd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) | 
						
							| 34 | 24 | recnd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) | 
						
							| 35 |  | simpl |  |-  ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) | 
						
							| 36 | 1 | lnopmuli |  |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) | 
						
							| 37 | 34 35 36 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) ) | 
						
							| 39 | 1 | lnopfi |  |-  T : ~H --> ~H | 
						
							| 40 | 39 | ffvelcdmi |  |-  ( A e. ~H -> ( T ` A ) e. ~H ) | 
						
							| 41 | 40 | adantr |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. ~H ) | 
						
							| 42 |  | norm-iii |  |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ ( T ` A ) e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) | 
						
							| 43 | 34 41 42 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) | 
						
							| 44 | 38 43 | eqtrd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) | 
						
							| 45 |  | normcl |  |-  ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) | 
						
							| 46 | 40 45 | syl |  |-  ( A e. ~H -> ( normh ` ( T ` A ) ) e. RR ) | 
						
							| 47 | 46 | adantr |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. RR ) | 
						
							| 48 | 47 | recnd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. CC ) | 
						
							| 49 | 21 | recnd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) | 
						
							| 50 | 48 49 23 | divrec2d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) | 
						
							| 51 | 33 44 50 | 3eqtr4rd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) | 
						
							| 52 |  | hvmulcl |  |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) | 
						
							| 53 | 34 35 52 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) | 
						
							| 54 |  | normcl |  |-  ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) | 
						
							| 56 |  | norm1 |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) | 
						
							| 57 |  | eqle |  |-  ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) | 
						
							| 58 | 55 56 57 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) | 
						
							| 59 |  | nmoplb |  |-  ( ( T : ~H --> ~H /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) | 
						
							| 60 | 39 59 | mp3an1 |  |-  ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) | 
						
							| 61 | 53 58 60 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) | 
						
							| 62 | 51 61 | eqbrtrd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) ) | 
						
							| 63 | 14 | a1i |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normop ` T ) e. RR ) | 
						
							| 64 |  | ledivmul2 |  |-  ( ( ( normh ` ( T ` A ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) | 
						
							| 65 | 47 63 21 26 64 | syl112anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) | 
						
							| 66 | 62 65 | mpbid |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) | 
						
							| 67 | 19 66 | pm2.61dane |  |-  ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |