Step |
Hyp |
Ref |
Expression |
1 |
|
nmcopex.1 |
|- T e. LinOp |
2 |
|
nmcopex.2 |
|- T e. ContOp |
3 |
|
0le0 |
|- 0 <_ 0 |
4 |
3
|
a1i |
|- ( A = 0h -> 0 <_ 0 ) |
5 |
|
fveq2 |
|- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
6 |
1
|
lnop0i |
|- ( T ` 0h ) = 0h |
7 |
5 6
|
eqtrdi |
|- ( A = 0h -> ( T ` A ) = 0h ) |
8 |
7
|
fveq2d |
|- ( A = 0h -> ( normh ` ( T ` A ) ) = ( normh ` 0h ) ) |
9 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
10 |
8 9
|
eqtrdi |
|- ( A = 0h -> ( normh ` ( T ` A ) ) = 0 ) |
11 |
|
fveq2 |
|- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
12 |
11 9
|
eqtrdi |
|- ( A = 0h -> ( normh ` A ) = 0 ) |
13 |
12
|
oveq2d |
|- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` T ) x. 0 ) ) |
14 |
1 2
|
nmcopexi |
|- ( normop ` T ) e. RR |
15 |
14
|
recni |
|- ( normop ` T ) e. CC |
16 |
15
|
mul01i |
|- ( ( normop ` T ) x. 0 ) = 0 |
17 |
13 16
|
eqtrdi |
|- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = 0 ) |
18 |
4 10 17
|
3brtr4d |
|- ( A = 0h -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
19 |
18
|
adantl |
|- ( ( A e. ~H /\ A = 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
20 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
21 |
20
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
22 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
23 |
22
|
biimpar |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
24 |
21 23
|
rereccld |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
25 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
26 |
25
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
27 |
21 26
|
recgt0d |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
28 |
|
0re |
|- 0 e. RR |
29 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
30 |
28 29
|
mpan |
|- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
31 |
24 27 30
|
sylc |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
32 |
24 31
|
absidd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
33 |
32
|
oveq1d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
34 |
24
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
35 |
|
simpl |
|- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
36 |
1
|
lnopmuli |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
37 |
34 35 36
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
38 |
37
|
fveq2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) ) |
39 |
1
|
lnopfi |
|- T : ~H --> ~H |
40 |
39
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
41 |
40
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. ~H ) |
42 |
|
norm-iii |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ ( T ` A ) e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
43 |
34 41 42
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
44 |
38 43
|
eqtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
45 |
|
normcl |
|- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
46 |
40 45
|
syl |
|- ( A e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
47 |
46
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. RR ) |
48 |
47
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. CC ) |
49 |
21
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
50 |
48 49 23
|
divrec2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
51 |
33 44 50
|
3eqtr4rd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
52 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
53 |
34 35 52
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
54 |
|
normcl |
|- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
55 |
53 54
|
syl |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
56 |
|
norm1 |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
57 |
|
eqle |
|- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
58 |
55 56 57
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
59 |
|
nmoplb |
|- ( ( T : ~H --> ~H /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
60 |
39 59
|
mp3an1 |
|- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
61 |
53 58 60
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
62 |
51 61
|
eqbrtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) ) |
63 |
14
|
a1i |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normop ` T ) e. RR ) |
64 |
|
ledivmul2 |
|- ( ( ( normh ` ( T ` A ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
65 |
47 63 21 26 64
|
syl112anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
66 |
62 65
|
mpbid |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
67 |
19 66
|
pm2.61dane |
|- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |