| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmf.x |
|- X = ( Base ` G ) |
| 2 |
|
nmf.n |
|- N = ( norm ` G ) |
| 3 |
|
nmeq0.z |
|- .0. = ( 0g ` G ) |
| 4 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 5 |
2 1 3 4
|
nmval |
|- ( A e. X -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) |
| 6 |
5
|
adantl |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) |
| 7 |
6
|
eqeq1d |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> ( A ( dist ` G ) .0. ) = 0 ) ) |
| 8 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
| 9 |
8
|
adantr |
|- ( ( G e. NrmGrp /\ A e. X ) -> G e. Grp ) |
| 10 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
| 11 |
9 10
|
syl |
|- ( ( G e. NrmGrp /\ A e. X ) -> .0. e. X ) |
| 12 |
|
ngpxms |
|- ( G e. NrmGrp -> G e. *MetSp ) |
| 13 |
1 4
|
xmseq0 |
|- ( ( G e. *MetSp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 14 |
12 13
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 15 |
11 14
|
mpd3an3 |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 16 |
7 15
|
bitrd |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |