| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nmf.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | nmeq0.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 5 | 2 1 3 4 | nmval |  |-  ( A e. X -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> ( A ( dist ` G ) .0. ) = 0 ) ) | 
						
							| 8 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 9 | 8 | adantr |  |-  ( ( G e. NrmGrp /\ A e. X ) -> G e. Grp ) | 
						
							| 10 | 1 3 | grpidcl |  |-  ( G e. Grp -> .0. e. X ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> .0. e. X ) | 
						
							| 12 |  | ngpxms |  |-  ( G e. NrmGrp -> G e. *MetSp ) | 
						
							| 13 | 1 4 | xmseq0 |  |-  ( ( G e. *MetSp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) | 
						
							| 14 | 12 13 | syl3an1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) | 
						
							| 15 | 11 14 | mpd3an3 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) | 
						
							| 16 | 7 15 | bitrd |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |