Metamath Proof Explorer


Theorem nmf

Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x
|- X = ( Base ` G )
nmf.n
|- N = ( norm ` G )
Assertion nmf
|- ( G e. NrmGrp -> N : X --> RR )

Proof

Step Hyp Ref Expression
1 nmf.x
 |-  X = ( Base ` G )
2 nmf.n
 |-  N = ( norm ` G )
3 ngpgrp
 |-  ( G e. NrmGrp -> G e. Grp )
4 eqid
 |-  ( ( dist ` G ) |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) )
5 1 4 ngpmet
 |-  ( G e. NrmGrp -> ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) )
6 eqid
 |-  ( dist ` G ) = ( dist ` G )
7 2 1 6 4 nmf2
 |-  ( ( G e. Grp /\ ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) ) -> N : X --> RR )
8 3 5 7 syl2anc
 |-  ( G e. NrmGrp -> N : X --> RR )