Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
nmf.n | |- N = ( norm ` G ) |
||
Assertion | nmf | |- ( G e. NrmGrp -> N : X --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | |- X = ( Base ` G ) |
|
2 | nmf.n | |- N = ( norm ` G ) |
|
3 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
4 | eqid | |- ( ( dist ` G ) |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
|
5 | 1 4 | ngpmet | |- ( G e. NrmGrp -> ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) ) |
6 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
7 | 2 1 6 4 | nmf2 | |- ( ( G e. Grp /\ ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) ) -> N : X --> RR ) |
8 | 3 5 7 | syl2anc | |- ( G e. NrmGrp -> N : X --> RR ) |