Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| Assertion | nmf | |- ( G e. NrmGrp -> N : X --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 4 | eqid | |- ( ( dist ` G ) |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
|
| 5 | 1 4 | ngpmet | |- ( G e. NrmGrp -> ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 7 | 2 1 6 4 | nmf2 | |- ( ( G e. Grp /\ ( ( dist ` G ) |` ( X X. X ) ) e. ( Met ` X ) ) -> N : X --> RR ) |
| 8 | 3 5 7 | syl2anc | |- ( G e. NrmGrp -> N : X --> RR ) |