Step |
Hyp |
Ref |
Expression |
1 |
|
0lnfn |
|- ( ~H X. { 0 } ) e. LinFn |
2 |
|
lnfnf |
|- ( ( ~H X. { 0 } ) e. LinFn -> ( ~H X. { 0 } ) : ~H --> CC ) |
3 |
|
nmfnval |
|- ( ( ~H X. { 0 } ) : ~H --> CC -> ( normfn ` ( ~H X. { 0 } ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) ) |
4 |
1 2 3
|
mp2b |
|- ( normfn ` ( ~H X. { 0 } ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) |
5 |
|
c0ex |
|- 0 e. _V |
6 |
5
|
fvconst2 |
|- ( y e. ~H -> ( ( ~H X. { 0 } ) ` y ) = 0 ) |
7 |
6
|
fveq2d |
|- ( y e. ~H -> ( abs ` ( ( ~H X. { 0 } ) ` y ) ) = ( abs ` 0 ) ) |
8 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
9 |
7 8
|
eqtrdi |
|- ( y e. ~H -> ( abs ` ( ( ~H X. { 0 } ) ` y ) ) = 0 ) |
10 |
9
|
eqeq2d |
|- ( y e. ~H -> ( x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) <-> x = 0 ) ) |
11 |
10
|
anbi2d |
|- ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = 0 ) ) ) |
12 |
11
|
rexbiia |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) ) |
13 |
|
ax-hv0cl |
|- 0h e. ~H |
14 |
|
0le1 |
|- 0 <_ 1 |
15 |
|
fveq2 |
|- ( y = 0h -> ( normh ` y ) = ( normh ` 0h ) ) |
16 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
17 |
15 16
|
eqtrdi |
|- ( y = 0h -> ( normh ` y ) = 0 ) |
18 |
17
|
breq1d |
|- ( y = 0h -> ( ( normh ` y ) <_ 1 <-> 0 <_ 1 ) ) |
19 |
18
|
rspcev |
|- ( ( 0h e. ~H /\ 0 <_ 1 ) -> E. y e. ~H ( normh ` y ) <_ 1 ) |
20 |
13 14 19
|
mp2an |
|- E. y e. ~H ( normh ` y ) <_ 1 |
21 |
|
r19.41v |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> ( E. y e. ~H ( normh ` y ) <_ 1 /\ x = 0 ) ) |
22 |
20 21
|
mpbiran |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> x = 0 ) |
23 |
12 22
|
bitri |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> x = 0 ) |
24 |
23
|
abbii |
|- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } = { x | x = 0 } |
25 |
|
df-sn |
|- { 0 } = { x | x = 0 } |
26 |
24 25
|
eqtr4i |
|- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } = { 0 } |
27 |
26
|
supeq1i |
|- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) = sup ( { 0 } , RR* , < ) |
28 |
|
xrltso |
|- < Or RR* |
29 |
|
0xr |
|- 0 e. RR* |
30 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
31 |
28 29 30
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
32 |
4 27 31
|
3eqtri |
|- ( normfn ` ( ~H X. { 0 } ) ) = 0 |