| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmfval.n |
|- N = ( norm ` W ) |
| 2 |
|
nmfval.x |
|- X = ( Base ` W ) |
| 3 |
|
nmfval.z |
|- .0. = ( 0g ` W ) |
| 4 |
|
nmfval.d |
|- D = ( dist ` W ) |
| 5 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
| 6 |
5 2
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = X ) |
| 7 |
|
fveq2 |
|- ( w = W -> ( dist ` w ) = ( dist ` W ) ) |
| 8 |
7 4
|
eqtr4di |
|- ( w = W -> ( dist ` w ) = D ) |
| 9 |
|
eqidd |
|- ( w = W -> x = x ) |
| 10 |
|
fveq2 |
|- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( w = W -> ( 0g ` w ) = .0. ) |
| 12 |
8 9 11
|
oveq123d |
|- ( w = W -> ( x ( dist ` w ) ( 0g ` w ) ) = ( x D .0. ) ) |
| 13 |
6 12
|
mpteq12dv |
|- ( w = W -> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) = ( x e. X |-> ( x D .0. ) ) ) |
| 14 |
|
df-nm |
|- norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) ) |
| 15 |
|
eqid |
|- ( x e. X |-> ( x D .0. ) ) = ( x e. X |-> ( x D .0. ) ) |
| 16 |
|
df-ov |
|- ( x D .0. ) = ( D ` <. x , .0. >. ) |
| 17 |
|
fvrn0 |
|- ( D ` <. x , .0. >. ) e. ( ran D u. { (/) } ) |
| 18 |
16 17
|
eqeltri |
|- ( x D .0. ) e. ( ran D u. { (/) } ) |
| 19 |
18
|
a1i |
|- ( x e. X -> ( x D .0. ) e. ( ran D u. { (/) } ) ) |
| 20 |
15 19
|
fmpti |
|- ( x e. X |-> ( x D .0. ) ) : X --> ( ran D u. { (/) } ) |
| 21 |
2
|
fvexi |
|- X e. _V |
| 22 |
4
|
fvexi |
|- D e. _V |
| 23 |
22
|
rnex |
|- ran D e. _V |
| 24 |
|
p0ex |
|- { (/) } e. _V |
| 25 |
23 24
|
unex |
|- ( ran D u. { (/) } ) e. _V |
| 26 |
|
fex2 |
|- ( ( ( x e. X |-> ( x D .0. ) ) : X --> ( ran D u. { (/) } ) /\ X e. _V /\ ( ran D u. { (/) } ) e. _V ) -> ( x e. X |-> ( x D .0. ) ) e. _V ) |
| 27 |
20 21 25 26
|
mp3an |
|- ( x e. X |-> ( x D .0. ) ) e. _V |
| 28 |
13 14 27
|
fvmpt |
|- ( W e. _V -> ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) ) |
| 29 |
|
fvprc |
|- ( -. W e. _V -> ( norm ` W ) = (/) ) |
| 30 |
|
mpt0 |
|- ( x e. (/) |-> ( x D .0. ) ) = (/) |
| 31 |
29 30
|
eqtr4di |
|- ( -. W e. _V -> ( norm ` W ) = ( x e. (/) |-> ( x D .0. ) ) ) |
| 32 |
|
fvprc |
|- ( -. W e. _V -> ( Base ` W ) = (/) ) |
| 33 |
2 32
|
eqtrid |
|- ( -. W e. _V -> X = (/) ) |
| 34 |
33
|
mpteq1d |
|- ( -. W e. _V -> ( x e. X |-> ( x D .0. ) ) = ( x e. (/) |-> ( x D .0. ) ) ) |
| 35 |
31 34
|
eqtr4d |
|- ( -. W e. _V -> ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) ) |
| 36 |
28 35
|
pm2.61i |
|- ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) |
| 37 |
1 36
|
eqtri |
|- N = ( x e. X |-> ( x D .0. ) ) |