| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nmf.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 5 | 1 4 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 6 | 3 5 | syl |  |-  ( G e. NrmGrp -> ( 0g ` G ) e. X ) | 
						
							| 7 | 6 | adantr |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( 0g ` G ) e. X ) | 
						
							| 8 |  | ngpxms |  |-  ( G e. NrmGrp -> G e. *MetSp ) | 
						
							| 9 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 10 | 1 9 | xmsge0 |  |-  ( ( G e. *MetSp /\ A e. X /\ ( 0g ` G ) e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 11 | 8 10 | syl3an1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ ( 0g ` G ) e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 12 | 7 11 | mpd3an3 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 13 | 2 1 4 9 | nmval |  |-  ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 15 | 12 14 | breqtrrd |  |-  ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( N ` A ) ) |