| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmgt0.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nmgt0.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | nmgt0.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 | 1 2 3 | nmeq0 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) | 
						
							| 5 | 4 | necon3bid |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= .0. ) ) | 
						
							| 6 | 1 2 | nmcl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 7 | 1 2 | nmge0 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( N ` A ) ) | 
						
							| 8 |  | ne0gt0 |  |-  ( ( ( N ` A ) e. RR /\ 0 <_ ( N ` A ) ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) | 
						
							| 10 | 5 9 | bitr3d |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |