Step |
Hyp |
Ref |
Expression |
1 |
|
nmhmcn.j |
|- J = ( TopOpen ` S ) |
2 |
|
nmhmcn.k |
|- K = ( TopOpen ` T ) |
3 |
|
nmhmcn.g |
|- G = ( Scalar ` S ) |
4 |
|
nmhmcn.b |
|- B = ( Base ` G ) |
5 |
|
elinel1 |
|- ( S e. ( NrmMod i^i CMod ) -> S e. NrmMod ) |
6 |
|
elinel1 |
|- ( T e. ( NrmMod i^i CMod ) -> T e. NrmMod ) |
7 |
|
isnmhm |
|- ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
8 |
7
|
baib |
|- ( ( S e. NrmMod /\ T e. NrmMod ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
9 |
5 6 8
|
syl2an |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
10 |
9
|
3adant3 |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
11 |
1 2
|
nghmcn |
|- ( F e. ( S NGHom T ) -> F e. ( J Cn K ) ) |
12 |
|
simpll1 |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. ( NrmMod i^i CMod ) ) |
13 |
12
|
elin1d |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmMod ) |
14 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
15 |
|
ngpms |
|- ( S e. NrmGrp -> S e. MetSp ) |
16 |
13 14 15
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. MetSp ) |
17 |
|
msxms |
|- ( S e. MetSp -> S e. *MetSp ) |
18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
19 |
|
eqid |
|- ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) = ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) |
20 |
18 19
|
xmsxmet |
|- ( S e. *MetSp -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
21 |
16 17 20
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
22 |
|
simpr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( J Cn K ) ) |
23 |
|
simpll2 |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. ( NrmMod i^i CMod ) ) |
24 |
23
|
elin1d |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmMod ) |
25 |
|
nlmngp |
|- ( T e. NrmMod -> T e. NrmGrp ) |
26 |
|
ngpms |
|- ( T e. NrmGrp -> T e. MetSp ) |
27 |
24 25 26
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. MetSp ) |
28 |
|
msxms |
|- ( T e. MetSp -> T e. *MetSp ) |
29 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
30 |
|
eqid |
|- ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) |
31 |
29 30
|
xmsxmet |
|- ( T e. *MetSp -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
32 |
27 28 31
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
33 |
|
nlmlmod |
|- ( T e. NrmMod -> T e. LMod ) |
34 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
35 |
29 34
|
lmod0vcl |
|- ( T e. LMod -> ( 0g ` T ) e. ( Base ` T ) ) |
36 |
24 33 35
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( Base ` T ) ) |
37 |
|
1rp |
|- 1 e. RR+ |
38 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
39 |
37 38
|
mp1i |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR* ) |
40 |
|
eqid |
|- ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
41 |
40
|
blopn |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
42 |
32 36 39 41
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
43 |
2 29 30
|
mstopn |
|- ( T e. MetSp -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
44 |
24 25 26 43
|
4syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
45 |
42 44
|
eleqtrrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) |
46 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) |
47 |
22 45 46
|
syl2anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) |
48 |
1 18 19
|
mstopn |
|- ( S e. MetSp -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
49 |
13 14 15 48
|
4syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
50 |
47 49
|
eleqtrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
51 |
|
nlmlmod |
|- ( S e. NrmMod -> S e. LMod ) |
52 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
53 |
18 52
|
lmod0vcl |
|- ( S e. LMod -> ( 0g ` S ) e. ( Base ` S ) ) |
54 |
13 51 53
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
55 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
56 |
55
|
ad2antlr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S GrpHom T ) ) |
57 |
52 34
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
58 |
56 57
|
syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
59 |
37
|
a1i |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR+ ) |
60 |
|
blcntr |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR+ ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
61 |
32 36 59 60
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
62 |
58 61
|
eqeltrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
63 |
18 29
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
64 |
63
|
ad2antlr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
65 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
66 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
67 |
64 65 66
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
68 |
54 62 67
|
mpbir2and |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
69 |
|
eqid |
|- ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) |
70 |
69
|
mopni2 |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) /\ ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
71 |
21 50 68 70
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
72 |
|
simpl1 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. ( NrmMod i^i CMod ) ) |
73 |
72
|
elin1d |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmMod ) |
74 |
73 14
|
syl |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmGrp ) |
75 |
74
|
adantr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmGrp ) |
76 |
75
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. NrmGrp ) |
77 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
78 |
76 77
|
syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. Grp ) |
79 |
|
simpr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
80 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
81 |
|
eqid |
|- ( dist ` S ) = ( dist ` S ) |
82 |
80 18 52 81 19
|
nmval2 |
|- ( ( S e. Grp /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) |
83 |
78 79 82
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) |
84 |
21
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
85 |
54
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
86 |
|
xmetsym |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ y e. ( Base ` S ) /\ ( 0g ` S ) e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
87 |
84 79 85 86
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
88 |
83 87
|
eqtrd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
89 |
88
|
breq1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x <-> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) |
90 |
89
|
biimpd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) |
91 |
64
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
92 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
93 |
91 65 92
|
3syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
94 |
32
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
95 |
36
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` T ) e. ( Base ` T ) ) |
96 |
37 38
|
mp1i |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR* ) |
97 |
|
elbl |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) |
98 |
94 95 96 97
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) |
99 |
|
simpl2 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. ( NrmMod i^i CMod ) ) |
100 |
99
|
elin1d |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmMod ) |
101 |
100 25
|
syl |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmGrp ) |
102 |
101
|
adantr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmGrp ) |
103 |
102
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. NrmGrp ) |
104 |
|
simplr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S LMHom T ) ) |
105 |
104
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F e. ( S LMHom T ) ) |
106 |
105 63
|
syl |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
107 |
106
|
ffvelrnda |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( F ` y ) e. ( Base ` T ) ) |
108 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
109 |
29 108
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) |
110 |
103 107 109
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) |
111 |
|
1re |
|- 1 e. RR |
112 |
|
ltle |
|- ( ( ( ( norm ` T ) ` ( F ` y ) ) e. RR /\ 1 e. RR ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) |
113 |
110 111 112
|
sylancl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) |
114 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
115 |
103 114
|
syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. Grp ) |
116 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
117 |
108 29 34 116 30
|
nmval2 |
|- ( ( T e. Grp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) |
118 |
115 107 117
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) |
119 |
|
xmetsym |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( F ` y ) e. ( Base ` T ) /\ ( 0g ` T ) e. ( Base ` T ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
120 |
94 107 95 119
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
121 |
118 120
|
eqtrd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
122 |
121
|
breq1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 <-> ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) |
123 |
|
1red |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR ) |
124 |
|
simplr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> x e. RR+ ) |
125 |
110 123 124
|
lediv1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) <_ 1 <-> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
126 |
113 122 125
|
3imtr3d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
127 |
126
|
adantld |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
128 |
98 127
|
sylbid |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
129 |
128
|
adantld |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
130 |
93 129
|
sylbid |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
131 |
90 130
|
imim12d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
132 |
131
|
ralimdva |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
133 |
|
rpxr |
|- ( x e. RR+ -> x e. RR* ) |
134 |
|
blval |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( 0g ` S ) e. ( Base ` S ) /\ x e. RR* ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) |
135 |
21 54 133 134
|
syl2an3an |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) |
136 |
135
|
sseq1d |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
137 |
|
rabss |
|- ( { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
138 |
136 137
|
bitrdi |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) ) |
139 |
|
eqid |
|- ( S normOp T ) = ( S normOp T ) |
140 |
12
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> S e. ( NrmMod i^i CMod ) ) |
141 |
23
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> T e. ( NrmMod i^i CMod ) ) |
142 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
143 |
142
|
adantl |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
144 |
143
|
rpxrd |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR* ) |
145 |
|
simpr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> x e. RR+ ) |
146 |
|
simpl3 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> QQ C_ B ) |
147 |
146
|
ad2antrr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> QQ C_ B ) |
148 |
139 18 80 108 3 4 140 141 105 144 145 147
|
nmoleub2b |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) <-> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
149 |
132 138 148
|
3imtr4d |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) |
150 |
75 102 56
|
3jca |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) ) |
151 |
142
|
rpred |
|- ( x e. RR+ -> ( 1 / x ) e. RR ) |
152 |
139
|
bddnghm |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( ( 1 / x ) e. RR /\ ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) -> F e. ( S NGHom T ) ) |
153 |
152
|
expr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( 1 / x ) e. RR ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) |
154 |
150 151 153
|
syl2an |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) |
155 |
149 154
|
syld |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) |
156 |
155
|
rexlimdva |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) |
157 |
71 156
|
mpd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S NGHom T ) ) |
158 |
157
|
ex |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( J Cn K ) -> F e. ( S NGHom T ) ) ) |
159 |
11 158
|
impbid2 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( S NGHom T ) <-> F e. ( J Cn K ) ) ) |
160 |
159
|
pm5.32da |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) |
161 |
10 160
|
bitrd |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) |