Metamath Proof Explorer


Theorem nmhmlmhm

Description: A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nmhmlmhm
|- ( F e. ( S NMHom T ) -> F e. ( S LMHom T ) )

Proof

Step Hyp Ref Expression
1 isnmhm
 |-  ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) )
2 1 simprbi
 |-  ( F e. ( S NMHom T ) -> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) )
3 2 simpld
 |-  ( F e. ( S NMHom T ) -> F e. ( S LMHom T ) )