Metamath Proof Explorer


Theorem nmhmrcl1

Description: Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nmhmrcl1
|- ( F e. ( S NMHom T ) -> S e. NrmMod )

Proof

Step Hyp Ref Expression
1 isnmhm
 |-  ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) )
2 1 simplbi
 |-  ( F e. ( S NMHom T ) -> ( S e. NrmMod /\ T e. NrmMod ) )
3 2 simpld
 |-  ( F e. ( S NMHom T ) -> S e. NrmMod )