| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nmf.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | nminv.i |  |-  I = ( invg ` G ) | 
						
							| 4 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 5 | 4 | adantr |  |-  ( ( G e. NrmGrp /\ A e. X ) -> G e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 | 1 6 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 8 | 5 7 | syl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( 0g ` G ) e. X ) | 
						
							| 9 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 10 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 11 | 2 1 9 10 | ngpdsr |  |-  ( ( G e. NrmGrp /\ A e. X /\ ( 0g ` G ) e. X ) -> ( A ( dist ` G ) ( 0g ` G ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) | 
						
							| 12 | 8 11 | mpd3an3 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( A ( dist ` G ) ( 0g ` G ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) | 
						
							| 13 | 2 1 6 10 | nmval |  |-  ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 15 | 1 9 3 6 | grpinvval2 |  |-  ( ( G e. Grp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) | 
						
							| 16 | 4 15 | sylan |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` ( I ` A ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) | 
						
							| 18 | 12 14 17 | 3eqtr4rd |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` ( I ` A ) ) = ( N ` A ) ) |