Step |
Hyp |
Ref |
Expression |
1 |
|
nminvr.n |
|- N = ( norm ` R ) |
2 |
|
nminvr.u |
|- U = ( Unit ` R ) |
3 |
|
nminvr.i |
|- I = ( invr ` R ) |
4 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
5 |
4
|
3ad2ant1 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmGrp ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
6 2
|
unitcl |
|- ( A e. U -> A e. ( Base ` R ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. ( Base ` R ) ) |
9 |
6 1
|
nmcl |
|- ( ( R e. NrmGrp /\ A e. ( Base ` R ) ) -> ( N ` A ) e. RR ) |
10 |
5 8 9
|
syl2anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) e. RR ) |
11 |
10
|
recnd |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) e. CC ) |
12 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
13 |
12
|
3ad2ant2 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. Ring ) |
14 |
|
simp3 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. U ) |
15 |
2 3 6
|
ringinvcl |
|- ( ( R e. Ring /\ A e. U ) -> ( I ` A ) e. ( Base ` R ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( I ` A ) e. ( Base ` R ) ) |
17 |
6 1
|
nmcl |
|- ( ( R e. NrmGrp /\ ( I ` A ) e. ( Base ` R ) ) -> ( N ` ( I ` A ) ) e. RR ) |
18 |
5 16 17
|
syl2anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) e. RR ) |
19 |
18
|
recnd |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) e. CC ) |
20 |
1 2
|
unitnmn0 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) =/= 0 ) |
21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
22 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
23 |
2 3 21 22
|
unitrinv |
|- ( ( R e. Ring /\ A e. U ) -> ( A ( .r ` R ) ( I ` A ) ) = ( 1r ` R ) ) |
24 |
13 14 23
|
syl2anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( A ( .r ` R ) ( I ` A ) ) = ( 1r ` R ) ) |
25 |
24
|
fveq2d |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( N ` ( 1r ` R ) ) ) |
26 |
|
simp1 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmRing ) |
27 |
6 1 21
|
nmmul |
|- ( ( R e. NrmRing /\ A e. ( Base ` R ) /\ ( I ` A ) e. ( Base ` R ) ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( ( N ` A ) x. ( N ` ( I ` A ) ) ) ) |
28 |
26 8 16 27
|
syl3anc |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( ( N ` A ) x. ( N ` ( I ` A ) ) ) ) |
29 |
1 22
|
nm1 |
|- ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` ( 1r ` R ) ) = 1 ) |
30 |
29
|
3adant3 |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( 1r ` R ) ) = 1 ) |
31 |
25 28 30
|
3eqtr3d |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( ( N ` A ) x. ( N ` ( I ` A ) ) ) = 1 ) |
32 |
11 19 20 31
|
mvllmuld |
|- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) = ( 1 / ( N ` A ) ) ) |