Step |
Hyp |
Ref |
Expression |
1 |
|
nmlno0.3 |
|- N = ( U normOpOLD W ) |
2 |
|
nmlno0.0 |
|- Z = ( U 0op W ) |
3 |
|
nmlno0.7 |
|- L = ( U LnOp W ) |
4 |
|
nmlno0i.u |
|- U e. NrmCVec |
5 |
|
nmlno0i.w |
|- W e. NrmCVec |
6 |
|
fveqeq2 |
|- ( T = if ( T e. L , T , Z ) -> ( ( N ` T ) = 0 <-> ( N ` if ( T e. L , T , Z ) ) = 0 ) ) |
7 |
|
eqeq1 |
|- ( T = if ( T e. L , T , Z ) -> ( T = Z <-> if ( T e. L , T , Z ) = Z ) ) |
8 |
6 7
|
bibi12d |
|- ( T = if ( T e. L , T , Z ) -> ( ( ( N ` T ) = 0 <-> T = Z ) <-> ( ( N ` if ( T e. L , T , Z ) ) = 0 <-> if ( T e. L , T , Z ) = Z ) ) ) |
9 |
2 3
|
0lno |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. L ) |
10 |
4 5 9
|
mp2an |
|- Z e. L |
11 |
10
|
elimel |
|- if ( T e. L , T , Z ) e. L |
12 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
13 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
14 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
15 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
16 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
17 |
|
eqid |
|- ( 0vec ` W ) = ( 0vec ` W ) |
18 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
19 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
20 |
1 2 3 4 5 11 12 13 14 15 16 17 18 19
|
nmlno0lem |
|- ( ( N ` if ( T e. L , T , Z ) ) = 0 <-> if ( T e. L , T , Z ) = Z ) |
21 |
8 20
|
dedth |
|- ( T e. L -> ( ( N ` T ) = 0 <-> T = Z ) ) |