| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmlno0.3 |
|- N = ( U normOpOLD W ) |
| 2 |
|
nmlno0.0 |
|- Z = ( U 0op W ) |
| 3 |
|
nmlno0.7 |
|- L = ( U LnOp W ) |
| 4 |
|
nmlno0lem.u |
|- U e. NrmCVec |
| 5 |
|
nmlno0lem.w |
|- W e. NrmCVec |
| 6 |
|
nmlno0lem.l |
|- T e. L |
| 7 |
|
nmlno0lem.1 |
|- X = ( BaseSet ` U ) |
| 8 |
|
nmlno0lem.2 |
|- Y = ( BaseSet ` W ) |
| 9 |
|
nmlno0lem.r |
|- R = ( .sOLD ` U ) |
| 10 |
|
nmlno0lem.s |
|- S = ( .sOLD ` W ) |
| 11 |
|
nmlno0lem.p |
|- P = ( 0vec ` U ) |
| 12 |
|
nmlno0lem.q |
|- Q = ( 0vec ` W ) |
| 13 |
|
nmlno0lem.k |
|- K = ( normCV ` U ) |
| 14 |
|
nmlno0lem.m |
|- M = ( normCV ` W ) |
| 15 |
7 13
|
nvcl |
|- ( ( U e. NrmCVec /\ x e. X ) -> ( K ` x ) e. RR ) |
| 16 |
4 15
|
mpan |
|- ( x e. X -> ( K ` x ) e. RR ) |
| 17 |
16
|
recnd |
|- ( x e. X -> ( K ` x ) e. CC ) |
| 18 |
17
|
adantr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` x ) e. CC ) |
| 19 |
7 11 13
|
nvz |
|- ( ( U e. NrmCVec /\ x e. X ) -> ( ( K ` x ) = 0 <-> x = P ) ) |
| 20 |
4 19
|
mpan |
|- ( x e. X -> ( ( K ` x ) = 0 <-> x = P ) ) |
| 21 |
|
fveq2 |
|- ( x = P -> ( T ` x ) = ( T ` P ) ) |
| 22 |
7 8 11 12 3
|
lno0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` P ) = Q ) |
| 23 |
4 5 6 22
|
mp3an |
|- ( T ` P ) = Q |
| 24 |
21 23
|
eqtrdi |
|- ( x = P -> ( T ` x ) = Q ) |
| 25 |
20 24
|
biimtrdi |
|- ( x e. X -> ( ( K ` x ) = 0 -> ( T ` x ) = Q ) ) |
| 26 |
25
|
necon3d |
|- ( x e. X -> ( ( T ` x ) =/= Q -> ( K ` x ) =/= 0 ) ) |
| 27 |
26
|
imp |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` x ) =/= 0 ) |
| 28 |
18 27
|
recne0d |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( 1 / ( K ` x ) ) =/= 0 ) |
| 29 |
|
simpr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` x ) =/= Q ) |
| 30 |
18 27
|
reccld |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( 1 / ( K ` x ) ) e. CC ) |
| 31 |
7 8 3
|
lnof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |
| 32 |
4 5 6 31
|
mp3an |
|- T : X --> Y |
| 33 |
32
|
ffvelcdmi |
|- ( x e. X -> ( T ` x ) e. Y ) |
| 34 |
33
|
adantr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` x ) e. Y ) |
| 35 |
8 10 12
|
nvmul0or |
|- ( ( W e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 36 |
5 35
|
mp3an1 |
|- ( ( ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 37 |
30 34 36
|
syl2anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 38 |
37
|
necon3abid |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> -. ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 39 |
|
neanior |
|- ( ( ( 1 / ( K ` x ) ) =/= 0 /\ ( T ` x ) =/= Q ) <-> -. ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) |
| 40 |
38 39
|
bitr4di |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> ( ( 1 / ( K ` x ) ) =/= 0 /\ ( T ` x ) =/= Q ) ) ) |
| 41 |
28 29 40
|
mpbir2and |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q ) |
| 42 |
8 10
|
nvscl |
|- ( ( W e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 43 |
5 42
|
mp3an1 |
|- ( ( ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 44 |
30 34 43
|
syl2anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 45 |
8 12 14
|
nvgt0 |
|- ( ( W e. NrmCVec /\ ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 46 |
5 44 45
|
sylancr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 47 |
41 46
|
mpbid |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) |
| 48 |
47
|
ex |
|- ( x e. X -> ( ( T ` x ) =/= Q -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 49 |
48
|
adantl |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( ( T ` x ) =/= Q -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 50 |
8 14
|
nmosetre |
|- ( ( W e. NrmCVec /\ T : X --> Y ) -> { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR ) |
| 51 |
5 32 50
|
mp2an |
|- { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR |
| 52 |
|
ressxr |
|- RR C_ RR* |
| 53 |
51 52
|
sstri |
|- { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR* |
| 54 |
|
simpl |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> x e. X ) |
| 55 |
7 9
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 56 |
4 55
|
mp3an1 |
|- ( ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 57 |
30 54 56
|
syl2anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 58 |
24
|
necon3i |
|- ( ( T ` x ) =/= Q -> x =/= P ) |
| 59 |
7 9 11 13
|
nv1 |
|- ( ( U e. NrmCVec /\ x e. X /\ x =/= P ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 60 |
4 59
|
mp3an1 |
|- ( ( x e. X /\ x =/= P ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 61 |
58 60
|
sylan2 |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 62 |
|
1re |
|- 1 e. RR |
| 63 |
61 62
|
eqeltrdi |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) e. RR ) |
| 64 |
|
eqle |
|- ( ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) e. RR /\ ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) |
| 65 |
63 61 64
|
syl2anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) |
| 66 |
4 5 6
|
3pm3.2i |
|- ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) |
| 67 |
7 9 10 3
|
lnomul |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 68 |
66 67
|
mpan |
|- ( ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 69 |
30 54 68
|
syl2anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 70 |
69
|
eqcomd |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) |
| 71 |
70
|
fveq2d |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) |
| 72 |
|
fveq2 |
|- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( K ` z ) = ( K ` ( ( 1 / ( K ` x ) ) R x ) ) ) |
| 73 |
72
|
breq1d |
|- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( K ` z ) <_ 1 <-> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) ) |
| 74 |
|
2fveq3 |
|- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( M ` ( T ` z ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) |
| 75 |
74
|
eqeq2d |
|- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) <-> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) |
| 76 |
73 75
|
anbi12d |
|- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) <-> ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) ) |
| 77 |
76
|
rspcev |
|- ( ( ( ( 1 / ( K ` x ) ) R x ) e. X /\ ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) -> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 78 |
57 65 71 77
|
syl12anc |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 79 |
|
fvex |
|- ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. _V |
| 80 |
|
eqeq1 |
|- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( y = ( M ` ( T ` z ) ) <-> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 81 |
80
|
anbi2d |
|- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) <-> ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) ) |
| 82 |
81
|
rexbidv |
|- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) <-> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) ) |
| 83 |
79 82
|
elab |
|- ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } <-> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 84 |
78 83
|
sylibr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } ) |
| 85 |
|
supxrub |
|- ( ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR* /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 86 |
53 84 85
|
sylancr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 87 |
86
|
adantll |
|- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 88 |
7 8 13 14 1
|
nmooval |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 89 |
4 5 32 88
|
mp3an |
|- ( N ` T ) = sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) |
| 90 |
89
|
eqeq1i |
|- ( ( N ` T ) = 0 <-> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 91 |
90
|
biimpi |
|- ( ( N ` T ) = 0 -> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 93 |
87 92
|
breqtrd |
|- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 ) |
| 94 |
8 14
|
nvcl |
|- ( ( W e. NrmCVec /\ ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR ) |
| 95 |
5 44 94
|
sylancr |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR ) |
| 96 |
|
0re |
|- 0 e. RR |
| 97 |
|
lenlt |
|- ( ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 98 |
95 96 97
|
sylancl |
|- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 99 |
98
|
adantll |
|- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 100 |
93 99
|
mpbid |
|- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) |
| 101 |
100
|
ex |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( ( T ` x ) =/= Q -> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 102 |
49 101
|
pm2.65d |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> -. ( T ` x ) =/= Q ) |
| 103 |
|
nne |
|- ( -. ( T ` x ) =/= Q <-> ( T ` x ) = Q ) |
| 104 |
102 103
|
sylib |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( T ` x ) = Q ) |
| 105 |
7 12 2
|
0oval |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ x e. X ) -> ( Z ` x ) = Q ) |
| 106 |
4 5 105
|
mp3an12 |
|- ( x e. X -> ( Z ` x ) = Q ) |
| 107 |
106
|
adantl |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( Z ` x ) = Q ) |
| 108 |
104 107
|
eqtr4d |
|- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( T ` x ) = ( Z ` x ) ) |
| 109 |
108
|
ralrimiva |
|- ( ( N ` T ) = 0 -> A. x e. X ( T ` x ) = ( Z ` x ) ) |
| 110 |
|
ffn |
|- ( T : X --> Y -> T Fn X ) |
| 111 |
32 110
|
ax-mp |
|- T Fn X |
| 112 |
7 8 2
|
0oo |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z : X --> Y ) |
| 113 |
4 5 112
|
mp2an |
|- Z : X --> Y |
| 114 |
|
ffn |
|- ( Z : X --> Y -> Z Fn X ) |
| 115 |
113 114
|
ax-mp |
|- Z Fn X |
| 116 |
|
eqfnfv |
|- ( ( T Fn X /\ Z Fn X ) -> ( T = Z <-> A. x e. X ( T ` x ) = ( Z ` x ) ) ) |
| 117 |
111 115 116
|
mp2an |
|- ( T = Z <-> A. x e. X ( T ` x ) = ( Z ` x ) ) |
| 118 |
109 117
|
sylibr |
|- ( ( N ` T ) = 0 -> T = Z ) |
| 119 |
|
fveq2 |
|- ( T = Z -> ( N ` T ) = ( N ` Z ) ) |
| 120 |
1 2
|
nmoo0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = 0 ) |
| 121 |
4 5 120
|
mp2an |
|- ( N ` Z ) = 0 |
| 122 |
119 121
|
eqtrdi |
|- ( T = Z -> ( N ` T ) = 0 ) |
| 123 |
118 122
|
impbii |
|- ( ( N ` T ) = 0 <-> T = Z ) |