Step |
Hyp |
Ref |
Expression |
1 |
|
nmlnogt0.3 |
|- N = ( U normOpOLD W ) |
2 |
|
nmlnogt0.0 |
|- Z = ( U 0op W ) |
3 |
|
nmlnogt0.7 |
|- L = ( U LnOp W ) |
4 |
1 2 3
|
nmlno0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) = 0 <-> T = Z ) ) |
5 |
4
|
necon3bid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> T =/= Z ) ) |
6 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
7 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
8 |
6 7 3
|
lnof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) |
9 |
6 7 1
|
nmoxr |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( N ` T ) e. RR* ) |
10 |
6 7 1
|
nmooge0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> 0 <_ ( N ` T ) ) |
11 |
|
0xr |
|- 0 e. RR* |
12 |
|
xrlttri2 |
|- ( ( ( N ` T ) e. RR* /\ 0 e. RR* ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
13 |
11 12
|
mpan2 |
|- ( ( N ` T ) e. RR* -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
14 |
13
|
adantr |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
15 |
|
xrlenlt |
|- ( ( 0 e. RR* /\ ( N ` T ) e. RR* ) -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
16 |
11 15
|
mpan |
|- ( ( N ` T ) e. RR* -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
17 |
16
|
biimpa |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> -. ( N ` T ) < 0 ) |
18 |
|
biorf |
|- ( -. ( N ` T ) < 0 -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
19 |
17 18
|
syl |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
20 |
14 19
|
bitr4d |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
21 |
9 10 20
|
syl2anc |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
22 |
8 21
|
syld3an3 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
23 |
5 22
|
bitr3d |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T =/= Z <-> 0 < ( N ` T ) ) ) |