Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
|- ( T = if ( T e. LinOp , T , 0hop ) -> ( ( normop ` T ) = 0 <-> ( normop ` if ( T e. LinOp , T , 0hop ) ) = 0 ) ) |
2 |
|
eqeq1 |
|- ( T = if ( T e. LinOp , T , 0hop ) -> ( T = 0hop <-> if ( T e. LinOp , T , 0hop ) = 0hop ) ) |
3 |
1 2
|
bibi12d |
|- ( T = if ( T e. LinOp , T , 0hop ) -> ( ( ( normop ` T ) = 0 <-> T = 0hop ) <-> ( ( normop ` if ( T e. LinOp , T , 0hop ) ) = 0 <-> if ( T e. LinOp , T , 0hop ) = 0hop ) ) ) |
4 |
|
0lnop |
|- 0hop e. LinOp |
5 |
4
|
elimel |
|- if ( T e. LinOp , T , 0hop ) e. LinOp |
6 |
5
|
nmlnop0iHIL |
|- ( ( normop ` if ( T e. LinOp , T , 0hop ) ) = 0 <-> if ( T e. LinOp , T , 0hop ) = 0hop ) |
7 |
3 6
|
dedth |
|- ( T e. LinOp -> ( ( normop ` T ) = 0 <-> T = 0hop ) ) |