| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmlnop0.1 |
|- T e. LinOp |
| 2 |
|
normcl |
|- ( x e. ~H -> ( normh ` x ) e. RR ) |
| 3 |
2
|
recnd |
|- ( x e. ~H -> ( normh ` x ) e. CC ) |
| 4 |
3
|
adantr |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` x ) e. CC ) |
| 5 |
|
norm-i |
|- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
| 6 |
|
fveq2 |
|- ( x = 0h -> ( T ` x ) = ( T ` 0h ) ) |
| 7 |
1
|
lnop0i |
|- ( T ` 0h ) = 0h |
| 8 |
6 7
|
eqtrdi |
|- ( x = 0h -> ( T ` x ) = 0h ) |
| 9 |
5 8
|
biimtrdi |
|- ( x e. ~H -> ( ( normh ` x ) = 0 -> ( T ` x ) = 0h ) ) |
| 10 |
9
|
necon3d |
|- ( x e. ~H -> ( ( T ` x ) =/= 0h -> ( normh ` x ) =/= 0 ) ) |
| 11 |
10
|
imp |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` x ) =/= 0 ) |
| 12 |
4 11
|
recne0d |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( 1 / ( normh ` x ) ) =/= 0 ) |
| 13 |
|
simpr |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` x ) =/= 0h ) |
| 14 |
4 11
|
reccld |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( 1 / ( normh ` x ) ) e. CC ) |
| 15 |
1
|
lnopfi |
|- T : ~H --> ~H |
| 16 |
15
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 17 |
16
|
adantr |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` x ) e. ~H ) |
| 18 |
|
hvmul0or |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = 0h <-> ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
| 19 |
14 17 18
|
syl2anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = 0h <-> ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
| 20 |
19
|
necon3abid |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> -. ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) ) |
| 21 |
|
neanior |
|- ( ( ( 1 / ( normh ` x ) ) =/= 0 /\ ( T ` x ) =/= 0h ) <-> -. ( ( 1 / ( normh ` x ) ) = 0 \/ ( T ` x ) = 0h ) ) |
| 22 |
20 21
|
bitr4di |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> ( ( 1 / ( normh ` x ) ) =/= 0 /\ ( T ` x ) =/= 0h ) ) ) |
| 23 |
12 13 22
|
mpbir2and |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h ) |
| 24 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H ) |
| 25 |
14 17 24
|
syl2anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H ) |
| 26 |
|
normgt0 |
|- ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 27 |
25 26
|
syl |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) =/= 0h <-> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 28 |
23 27
|
mpbid |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) |
| 29 |
28
|
ex |
|- ( x e. ~H -> ( ( T ` x ) =/= 0h -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( ( T ` x ) =/= 0h -> 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 31 |
|
nmopsetretHIL |
|- ( T : ~H --> ~H -> { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR ) |
| 32 |
15 31
|
ax-mp |
|- { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR |
| 33 |
|
ressxr |
|- RR C_ RR* |
| 34 |
32 33
|
sstri |
|- { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR* |
| 35 |
|
simpl |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> x e. ~H ) |
| 36 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ~H ) |
| 37 |
14 35 36
|
syl2anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ~H ) |
| 38 |
8
|
necon3i |
|- ( ( T ` x ) =/= 0h -> x =/= 0h ) |
| 39 |
|
norm1 |
|- ( ( x e. ~H /\ x =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
| 40 |
38 39
|
sylan2 |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
| 41 |
|
1re |
|- 1 e. RR |
| 42 |
40 41
|
eqeltrdi |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) e. RR ) |
| 43 |
|
eqle |
|- ( ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) |
| 44 |
42 40 43
|
syl2anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) |
| 45 |
1
|
lnopmuli |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) |
| 46 |
14 35 45
|
syl2anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) |
| 47 |
46
|
eqcomd |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) = ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 48 |
47
|
fveq2d |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) |
| 49 |
|
fveq2 |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( normh ` z ) = ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 50 |
49
|
breq1d |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` z ) <_ 1 <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 ) ) |
| 51 |
|
fveq2 |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( T ` z ) = ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 52 |
51
|
fveq2d |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( normh ` ( T ` z ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) |
| 53 |
52
|
eqeq2d |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) |
| 54 |
50 53
|
anbi12d |
|- ( z = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) <-> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) ) |
| 55 |
54
|
rspcev |
|- ( ( ( ( 1 / ( normh ` x ) ) .h x ) e. ~H /\ ( ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` x ) ) .h x ) ) ) ) ) -> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 56 |
37 44 48 55
|
syl12anc |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 57 |
|
fvex |
|- ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. _V |
| 58 |
|
eqeq1 |
|- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( y = ( normh ` ( T ` z ) ) <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 59 |
58
|
anbi2d |
|- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) <-> ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) ) |
| 60 |
59
|
rexbidv |
|- ( y = ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) -> ( E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) <-> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) ) |
| 61 |
57 60
|
elab |
|- ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } <-> E. z e. ~H ( ( normh ` z ) <_ 1 /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) = ( normh ` ( T ` z ) ) ) ) |
| 62 |
56 61
|
sylibr |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } ) |
| 63 |
|
supxrub |
|- ( ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } C_ RR* /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 64 |
34 62 63
|
sylancr |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 65 |
64
|
adantll |
|- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 66 |
|
nmopval |
|- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) ) |
| 67 |
15 66
|
ax-mp |
|- ( normop ` T ) = sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) |
| 68 |
67
|
eqeq1i |
|- ( ( normop ` T ) = 0 <-> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 69 |
68
|
biimpi |
|- ( ( normop ` T ) = 0 -> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> sup ( { y | E. z e. ~H ( ( normh ` z ) <_ 1 /\ y = ( normh ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 71 |
65 70
|
breqtrd |
|- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 ) |
| 72 |
|
normcl |
|- ( ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) e. ~H -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR ) |
| 73 |
25 72
|
syl |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR ) |
| 74 |
|
0re |
|- 0 e. RR |
| 75 |
|
lenlt |
|- ( ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 76 |
73 74 75
|
sylancl |
|- ( ( x e. ~H /\ ( T ` x ) =/= 0h ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 77 |
76
|
adantll |
|- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> ( ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) <_ 0 <-> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 78 |
71 77
|
mpbid |
|- ( ( ( ( normop ` T ) = 0 /\ x e. ~H ) /\ ( T ` x ) =/= 0h ) -> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) |
| 79 |
78
|
ex |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( ( T ` x ) =/= 0h -> -. 0 < ( normh ` ( ( 1 / ( normh ` x ) ) .h ( T ` x ) ) ) ) ) |
| 80 |
30 79
|
pm2.65d |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> -. ( T ` x ) =/= 0h ) |
| 81 |
|
nne |
|- ( -. ( T ` x ) =/= 0h <-> ( T ` x ) = 0h ) |
| 82 |
80 81
|
sylib |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( T ` x ) = 0h ) |
| 83 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
| 84 |
83
|
adantl |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
| 85 |
82 84
|
eqtr4d |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( T ` x ) = ( 0hop ` x ) ) |
| 86 |
85
|
ralrimiva |
|- ( ( normop ` T ) = 0 -> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) |
| 87 |
|
ffn |
|- ( T : ~H --> ~H -> T Fn ~H ) |
| 88 |
15 87
|
ax-mp |
|- T Fn ~H |
| 89 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 90 |
|
ffn |
|- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
| 91 |
89 90
|
ax-mp |
|- 0hop Fn ~H |
| 92 |
|
eqfnfv |
|- ( ( T Fn ~H /\ 0hop Fn ~H ) -> ( T = 0hop <-> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) ) |
| 93 |
88 91 92
|
mp2an |
|- ( T = 0hop <-> A. x e. ~H ( T ` x ) = ( 0hop ` x ) ) |
| 94 |
86 93
|
sylibr |
|- ( ( normop ` T ) = 0 -> T = 0hop ) |
| 95 |
|
fveq2 |
|- ( T = 0hop -> ( normop ` T ) = ( normop ` 0hop ) ) |
| 96 |
|
nmop0 |
|- ( normop ` 0hop ) = 0 |
| 97 |
95 96
|
eqtrdi |
|- ( T = 0hop -> ( normop ` T ) = 0 ) |
| 98 |
94 97
|
impbii |
|- ( ( normop ` T ) = 0 <-> T = 0hop ) |