Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmlnop0.1 | |- T e. LinOp |
|
Assertion | nmlnopgt0i | |- ( T =/= 0hop <-> 0 < ( normop ` T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmlnop0.1 | |- T e. LinOp |
|
2 | 1 | nmlnop0iHIL | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |
3 | 2 | necon3bii | |- ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) |
4 | 1 | lnopfi | |- T : ~H --> ~H |
5 | nmopgt0 | |- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |
|
6 | 4 5 | ax-mp | |- ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) |
7 | 3 6 | bitr3i | |- ( T =/= 0hop <-> 0 < ( normop ` T ) ) |