Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmlnop0.1 | |- T e. LinOp |
|
| Assertion | nmlnopgt0i | |- ( T =/= 0hop <-> 0 < ( normop ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnop0.1 | |- T e. LinOp |
|
| 2 | 1 | nmlnop0iHIL | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |
| 3 | 2 | necon3bii | |- ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) |
| 4 | 1 | lnopfi | |- T : ~H --> ~H |
| 5 | nmopgt0 | |- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) |
| 7 | 3 6 | bitr3i | |- ( T =/= 0hop <-> 0 < ( normop ` T ) ) |