Metamath Proof Explorer


Theorem nmlnopgt0i

Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1
|- T e. LinOp
Assertion nmlnopgt0i
|- ( T =/= 0hop <-> 0 < ( normop ` T ) )

Proof

Step Hyp Ref Expression
1 nmlnop0.1
 |-  T e. LinOp
2 1 nmlnop0iHIL
 |-  ( ( normop ` T ) = 0 <-> T = 0hop )
3 2 necon3bii
 |-  ( ( normop ` T ) =/= 0 <-> T =/= 0hop )
4 1 lnopfi
 |-  T : ~H --> ~H
5 nmopgt0
 |-  ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) )
6 4 5 ax-mp
 |-  ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) )
7 3 6 bitr3i
 |-  ( T =/= 0hop <-> 0 < ( normop ` T ) )