Metamath Proof Explorer


Theorem nmlnopne0

Description: A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmlnopne0
|- ( T e. LinOp -> ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) )

Proof

Step Hyp Ref Expression
1 nmlnop0
 |-  ( T e. LinOp -> ( ( normop ` T ) = 0 <-> T = 0hop ) )
2 1 necon3bid
 |-  ( T e. LinOp -> ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) )