| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | nmf.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | nmmtri.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 5 | 2 1 3 4 | ngpds |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( dist ` G ) B ) = ( N ` ( A .- B ) ) ) | 
						
							| 6 |  | ngpms |  |-  ( G e. NrmGrp -> G e. MetSp ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. MetSp ) | 
						
							| 8 |  | simp2 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 9 |  | simp3 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 10 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 12 | 1 11 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 13 | 10 12 | syl |  |-  ( G e. NrmGrp -> ( 0g ` G ) e. X ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( 0g ` G ) e. X ) | 
						
							| 15 | 1 4 | mstri3 |  |-  ( ( G e. MetSp /\ ( A e. X /\ B e. X /\ ( 0g ` G ) e. X ) ) -> ( A ( dist ` G ) B ) <_ ( ( A ( dist ` G ) ( 0g ` G ) ) + ( B ( dist ` G ) ( 0g ` G ) ) ) ) | 
						
							| 16 | 7 8 9 14 15 | syl13anc |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( dist ` G ) B ) <_ ( ( A ( dist ` G ) ( 0g ` G ) ) + ( B ( dist ` G ) ( 0g ` G ) ) ) ) | 
						
							| 17 | 2 1 11 4 | nmval |  |-  ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 19 | 2 1 11 4 | nmval |  |-  ( B e. X -> ( N ` B ) = ( B ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` B ) = ( B ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) + ( N ` B ) ) = ( ( A ( dist ` G ) ( 0g ` G ) ) + ( B ( dist ` G ) ( 0g ` G ) ) ) ) | 
						
							| 22 | 16 21 | breqtrrd |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( dist ` G ) B ) <_ ( ( N ` A ) + ( N ` B ) ) ) | 
						
							| 23 | 5 22 | eqbrtrrd |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |