Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmmul.x | |- X = ( Base ` R ) |
|
nmmul.n | |- N = ( norm ` R ) |
||
nmmul.t | |- .x. = ( .r ` R ) |
||
Assertion | nmmul | |- ( ( R e. NrmRing /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmmul.x | |- X = ( Base ` R ) |
|
2 | nmmul.n | |- N = ( norm ` R ) |
|
3 | nmmul.t | |- .x. = ( .r ` R ) |
|
4 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
5 | 2 4 | nrgabv | |- ( R e. NrmRing -> N e. ( AbsVal ` R ) ) |
6 | 4 1 3 | abvmul | |- ( ( N e. ( AbsVal ` R ) /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) ) |
7 | 5 6 | syl3an1 | |- ( ( R e. NrmRing /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) ) |