Metamath Proof Explorer


Theorem nmmul

Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nmmul.x
|- X = ( Base ` R )
nmmul.n
|- N = ( norm ` R )
nmmul.t
|- .x. = ( .r ` R )
Assertion nmmul
|- ( ( R e. NrmRing /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) )

Proof

Step Hyp Ref Expression
1 nmmul.x
 |-  X = ( Base ` R )
2 nmmul.n
 |-  N = ( norm ` R )
3 nmmul.t
 |-  .x. = ( .r ` R )
4 eqid
 |-  ( AbsVal ` R ) = ( AbsVal ` R )
5 2 4 nrgabv
 |-  ( R e. NrmRing -> N e. ( AbsVal ` R ) )
6 4 1 3 abvmul
 |-  ( ( N e. ( AbsVal ` R ) /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) )
7 5 6 syl3an1
 |-  ( ( R e. NrmRing /\ A e. X /\ B e. X ) -> ( N ` ( A .x. B ) ) = ( ( N ` A ) x. ( N ` B ) ) )