Description: The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
nmf.n | |- N = ( norm ` G ) |
||
nmeq0.z | |- .0. = ( 0g ` G ) |
||
Assertion | nmne0 | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) =/= 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | |- X = ( Base ` G ) |
|
2 | nmf.n | |- N = ( norm ` G ) |
|
3 | nmeq0.z | |- .0. = ( 0g ` G ) |
|
4 | 1 2 3 | nmeq0 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |
5 | 4 | necon3bid | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= .0. ) ) |
6 | 5 | biimp3ar | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) =/= 0 ) |