Metamath Proof Explorer


Theorem nmne0

Description: The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x
|- X = ( Base ` G )
nmf.n
|- N = ( norm ` G )
nmeq0.z
|- .0. = ( 0g ` G )
Assertion nmne0
|- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) =/= 0 )

Proof

Step Hyp Ref Expression
1 nmf.x
 |-  X = ( Base ` G )
2 nmf.n
 |-  N = ( norm ` G )
3 nmeq0.z
 |-  .0. = ( 0g ` G )
4 1 2 3 nmeq0
 |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) )
5 4 necon3bid
 |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= .0. ) )
6 5 biimp3ar
 |-  ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) =/= 0 )