Step |
Hyp |
Ref |
Expression |
1 |
|
nmo0.1 |
|- N = ( S normOp T ) |
2 |
|
nmo0.2 |
|- V = ( Base ` S ) |
3 |
|
nmo0.3 |
|- .0. = ( 0g ` T ) |
4 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
5 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
6 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
7 |
|
simpl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> S e. NrmGrp ) |
8 |
|
simpr |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> T e. NrmGrp ) |
9 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
10 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
11 |
3 2
|
0ghm |
|- ( ( S e. Grp /\ T e. Grp ) -> ( V X. { .0. } ) e. ( S GrpHom T ) ) |
12 |
9 10 11
|
syl2an |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( V X. { .0. } ) e. ( S GrpHom T ) ) |
13 |
|
0red |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> 0 e. RR ) |
14 |
|
0le0 |
|- 0 <_ 0 |
15 |
14
|
a1i |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> 0 <_ 0 ) |
16 |
3
|
fvexi |
|- .0. e. _V |
17 |
16
|
fvconst2 |
|- ( x e. V -> ( ( V X. { .0. } ) ` x ) = .0. ) |
18 |
17
|
ad2antrl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( V X. { .0. } ) ` x ) = .0. ) |
19 |
18
|
fveq2d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( V X. { .0. } ) ` x ) ) = ( ( norm ` T ) ` .0. ) ) |
20 |
5 3
|
nm0 |
|- ( T e. NrmGrp -> ( ( norm ` T ) ` .0. ) = 0 ) |
21 |
20
|
ad2antlr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` .0. ) = 0 ) |
22 |
19 21
|
eqtrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( V X. { .0. } ) ` x ) ) = 0 ) |
23 |
2 4
|
nmcl |
|- ( ( S e. NrmGrp /\ x e. V ) -> ( ( norm ` S ) ` x ) e. RR ) |
24 |
23
|
ad2ant2r |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
25 |
24
|
recnd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. CC ) |
26 |
25
|
mul02d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( 0 x. ( ( norm ` S ) ` x ) ) = 0 ) |
27 |
14 26
|
breqtrrid |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> 0 <_ ( 0 x. ( ( norm ` S ) ` x ) ) ) |
28 |
22 27
|
eqbrtrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( x e. V /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( V X. { .0. } ) ` x ) ) <_ ( 0 x. ( ( norm ` S ) ` x ) ) ) |
29 |
1 2 4 5 6 7 8 12 13 15 28
|
nmolb2d |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( N ` ( V X. { .0. } ) ) <_ 0 ) |
30 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ ( V X. { .0. } ) e. ( S GrpHom T ) ) -> 0 <_ ( N ` ( V X. { .0. } ) ) ) |
31 |
12 30
|
mpd3an3 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> 0 <_ ( N ` ( V X. { .0. } ) ) ) |
32 |
1
|
nmocl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ ( V X. { .0. } ) e. ( S GrpHom T ) ) -> ( N ` ( V X. { .0. } ) ) e. RR* ) |
33 |
12 32
|
mpd3an3 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( N ` ( V X. { .0. } ) ) e. RR* ) |
34 |
|
0xr |
|- 0 e. RR* |
35 |
|
xrletri3 |
|- ( ( ( N ` ( V X. { .0. } ) ) e. RR* /\ 0 e. RR* ) -> ( ( N ` ( V X. { .0. } ) ) = 0 <-> ( ( N ` ( V X. { .0. } ) ) <_ 0 /\ 0 <_ ( N ` ( V X. { .0. } ) ) ) ) ) |
36 |
33 34 35
|
sylancl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( ( N ` ( V X. { .0. } ) ) = 0 <-> ( ( N ` ( V X. { .0. } ) ) <_ 0 /\ 0 <_ ( N ` ( V X. { .0. } ) ) ) ) ) |
37 |
29 31 36
|
mpbir2and |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( N ` ( V X. { .0. } ) ) = 0 ) |