Description: The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
| Assertion | nmocl | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | 1 | nmof | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N : ( S GrpHom T ) --> RR* ) |
| 3 | 2 | ffvelcdmda | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
| 4 | 3 | 3impa | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |