Step |
Hyp |
Ref |
Expression |
1 |
|
nmoco.1 |
|- N = ( S normOp U ) |
2 |
|
nmoco.2 |
|- L = ( T normOp U ) |
3 |
|
nmoco.3 |
|- M = ( S normOp T ) |
4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
5 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
6 |
|
eqid |
|- ( norm ` U ) = ( norm ` U ) |
7 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
8 |
|
nghmrcl1 |
|- ( G e. ( S NGHom T ) -> S e. NrmGrp ) |
9 |
8
|
adantl |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> S e. NrmGrp ) |
10 |
|
nghmrcl2 |
|- ( F e. ( T NGHom U ) -> U e. NrmGrp ) |
11 |
10
|
adantr |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> U e. NrmGrp ) |
12 |
|
nghmghm |
|- ( F e. ( T NGHom U ) -> F e. ( T GrpHom U ) ) |
13 |
|
nghmghm |
|- ( G e. ( S NGHom T ) -> G e. ( S GrpHom T ) ) |
14 |
|
ghmco |
|- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
15 |
12 13 14
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
16 |
2
|
nghmcl |
|- ( F e. ( T NGHom U ) -> ( L ` F ) e. RR ) |
17 |
3
|
nghmcl |
|- ( G e. ( S NGHom T ) -> ( M ` G ) e. RR ) |
18 |
|
remulcl |
|- ( ( ( L ` F ) e. RR /\ ( M ` G ) e. RR ) -> ( ( L ` F ) x. ( M ` G ) ) e. RR ) |
19 |
16 17 18
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( ( L ` F ) x. ( M ` G ) ) e. RR ) |
20 |
|
nghmrcl1 |
|- ( F e. ( T NGHom U ) -> T e. NrmGrp ) |
21 |
2
|
nmoge0 |
|- ( ( T e. NrmGrp /\ U e. NrmGrp /\ F e. ( T GrpHom U ) ) -> 0 <_ ( L ` F ) ) |
22 |
20 10 12 21
|
syl3anc |
|- ( F e. ( T NGHom U ) -> 0 <_ ( L ` F ) ) |
23 |
16 22
|
jca |
|- ( F e. ( T NGHom U ) -> ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) |
24 |
|
nghmrcl2 |
|- ( G e. ( S NGHom T ) -> T e. NrmGrp ) |
25 |
3
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ G e. ( S GrpHom T ) ) -> 0 <_ ( M ` G ) ) |
26 |
8 24 13 25
|
syl3anc |
|- ( G e. ( S NGHom T ) -> 0 <_ ( M ` G ) ) |
27 |
17 26
|
jca |
|- ( G e. ( S NGHom T ) -> ( ( M ` G ) e. RR /\ 0 <_ ( M ` G ) ) ) |
28 |
|
mulge0 |
|- ( ( ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) /\ ( ( M ` G ) e. RR /\ 0 <_ ( M ` G ) ) ) -> 0 <_ ( ( L ` F ) x. ( M ` G ) ) ) |
29 |
23 27 28
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> 0 <_ ( ( L ` F ) x. ( M ` G ) ) ) |
30 |
10
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> U e. NrmGrp ) |
31 |
12
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( T GrpHom U ) ) |
32 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
33 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
34 |
32 33
|
ghmf |
|- ( F e. ( T GrpHom U ) -> F : ( Base ` T ) --> ( Base ` U ) ) |
35 |
31 34
|
syl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F : ( Base ` T ) --> ( Base ` U ) ) |
36 |
13
|
ad2antlr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G e. ( S GrpHom T ) ) |
37 |
4 32
|
ghmf |
|- ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
38 |
36 37
|
syl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
39 |
|
simprl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> x e. ( Base ` S ) ) |
40 |
38 39
|
ffvelrnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( G ` x ) e. ( Base ` T ) ) |
41 |
35 40
|
ffvelrnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( F ` ( G ` x ) ) e. ( Base ` U ) ) |
42 |
33 6
|
nmcl |
|- ( ( U e. NrmGrp /\ ( F ` ( G ` x ) ) e. ( Base ` U ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) e. RR ) |
43 |
30 41 42
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) e. RR ) |
44 |
16
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( L ` F ) e. RR ) |
45 |
20
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> T e. NrmGrp ) |
46 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
47 |
32 46
|
nmcl |
|- ( ( T e. NrmGrp /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
48 |
45 40 47
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
49 |
44 48
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) e. RR ) |
50 |
17
|
ad2antlr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( M ` G ) e. RR ) |
51 |
4 5
|
nmcl |
|- ( ( S e. NrmGrp /\ x e. ( Base ` S ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
52 |
8 51
|
sylan |
|- ( ( G e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
53 |
52
|
ad2ant2lr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
54 |
50 53
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) e. RR ) |
55 |
44 54
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) e. RR ) |
56 |
|
simpll |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( T NGHom U ) ) |
57 |
2 32 46 6
|
nmoi |
|- ( ( F e. ( T NGHom U ) /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) ) |
58 |
56 40 57
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) ) |
59 |
23
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) |
60 |
3 4 5 46
|
nmoi |
|- ( ( G e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) |
61 |
60
|
ad2ant2lr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) |
62 |
|
lemul2a |
|- ( ( ( ( ( norm ` T ) ` ( G ` x ) ) e. RR /\ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) e. RR /\ ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) /\ ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
63 |
48 54 59 61 62
|
syl31anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
64 |
43 49 55 58 63
|
letrd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
65 |
|
fvco3 |
|- ( ( G : ( Base ` S ) --> ( Base ` T ) /\ x e. ( Base ` S ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
66 |
38 39 65
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
67 |
66
|
fveq2d |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( ( F o. G ) ` x ) ) = ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) ) |
68 |
44
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( L ` F ) e. CC ) |
69 |
50
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( M ` G ) e. CC ) |
70 |
53
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. CC ) |
71 |
68 69 70
|
mulassd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( L ` F ) x. ( M ` G ) ) x. ( ( norm ` S ) ` x ) ) = ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
72 |
64 67 71
|
3brtr4d |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( ( F o. G ) ` x ) ) <_ ( ( ( L ` F ) x. ( M ` G ) ) x. ( ( norm ` S ) ` x ) ) ) |
73 |
1 4 5 6 7 9 11 15 19 29 72
|
nmolb2d |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( N ` ( F o. G ) ) <_ ( ( L ` F ) x. ( M ` G ) ) ) |