Step |
Hyp |
Ref |
Expression |
1 |
|
nmods.n |
|- N = ( S normOp T ) |
2 |
|
nmods.v |
|- V = ( Base ` S ) |
3 |
|
nmods.c |
|- C = ( dist ` S ) |
4 |
|
nmods.d |
|- D = ( dist ` T ) |
5 |
|
simp1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> F e. ( S NGHom T ) ) |
6 |
|
nghmrcl1 |
|- ( F e. ( S NGHom T ) -> S e. NrmGrp ) |
7 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
8 |
6 7
|
syl |
|- ( F e. ( S NGHom T ) -> S e. Grp ) |
9 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
10 |
2 9
|
grpsubcl |
|- ( ( S e. Grp /\ A e. V /\ B e. V ) -> ( A ( -g ` S ) B ) e. V ) |
11 |
8 10
|
syl3an1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( A ( -g ` S ) B ) e. V ) |
12 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
13 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
14 |
1 2 12 13
|
nmoi |
|- ( ( F e. ( S NGHom T ) /\ ( A ( -g ` S ) B ) e. V ) -> ( ( norm ` T ) ` ( F ` ( A ( -g ` S ) B ) ) ) <_ ( ( N ` F ) x. ( ( norm ` S ) ` ( A ( -g ` S ) B ) ) ) ) |
15 |
5 11 14
|
syl2anc |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( norm ` T ) ` ( F ` ( A ( -g ` S ) B ) ) ) <_ ( ( N ` F ) x. ( ( norm ` S ) ` ( A ( -g ` S ) B ) ) ) ) |
16 |
|
nghmrcl2 |
|- ( F e. ( S NGHom T ) -> T e. NrmGrp ) |
17 |
16
|
3ad2ant1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> T e. NrmGrp ) |
18 |
|
nghmghm |
|- ( F e. ( S NGHom T ) -> F e. ( S GrpHom T ) ) |
19 |
18
|
3ad2ant1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> F e. ( S GrpHom T ) ) |
20 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
21 |
2 20
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
22 |
19 21
|
syl |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> F : V --> ( Base ` T ) ) |
23 |
|
simp2 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> A e. V ) |
24 |
22 23
|
ffvelrnd |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( F ` A ) e. ( Base ` T ) ) |
25 |
|
simp3 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> B e. V ) |
26 |
22 25
|
ffvelrnd |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( F ` B ) e. ( Base ` T ) ) |
27 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
28 |
13 20 27 4
|
ngpds |
|- ( ( T e. NrmGrp /\ ( F ` A ) e. ( Base ` T ) /\ ( F ` B ) e. ( Base ` T ) ) -> ( ( F ` A ) D ( F ` B ) ) = ( ( norm ` T ) ` ( ( F ` A ) ( -g ` T ) ( F ` B ) ) ) ) |
29 |
17 24 26 28
|
syl3anc |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( F ` A ) D ( F ` B ) ) = ( ( norm ` T ) ` ( ( F ` A ) ( -g ` T ) ( F ` B ) ) ) ) |
30 |
2 9 27
|
ghmsub |
|- ( ( F e. ( S GrpHom T ) /\ A e. V /\ B e. V ) -> ( F ` ( A ( -g ` S ) B ) ) = ( ( F ` A ) ( -g ` T ) ( F ` B ) ) ) |
31 |
18 30
|
syl3an1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( F ` ( A ( -g ` S ) B ) ) = ( ( F ` A ) ( -g ` T ) ( F ` B ) ) ) |
32 |
31
|
fveq2d |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( norm ` T ) ` ( F ` ( A ( -g ` S ) B ) ) ) = ( ( norm ` T ) ` ( ( F ` A ) ( -g ` T ) ( F ` B ) ) ) ) |
33 |
29 32
|
eqtr4d |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( F ` A ) D ( F ` B ) ) = ( ( norm ` T ) ` ( F ` ( A ( -g ` S ) B ) ) ) ) |
34 |
12 2 9 3
|
ngpds |
|- ( ( S e. NrmGrp /\ A e. V /\ B e. V ) -> ( A C B ) = ( ( norm ` S ) ` ( A ( -g ` S ) B ) ) ) |
35 |
6 34
|
syl3an1 |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( A C B ) = ( ( norm ` S ) ` ( A ( -g ` S ) B ) ) ) |
36 |
35
|
oveq2d |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( N ` F ) x. ( A C B ) ) = ( ( N ` F ) x. ( ( norm ` S ) ` ( A ( -g ` S ) B ) ) ) ) |
37 |
15 33 36
|
3brtr4d |
|- ( ( F e. ( S NGHom T ) /\ A e. V /\ B e. V ) -> ( ( F ` A ) D ( F ` B ) ) <_ ( ( N ` F ) x. ( A C B ) ) ) |