| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  |-  N = ( S normOp T ) | 
						
							| 2 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 3 |  | eqid |  |-  ( norm ` S ) = ( norm ` S ) | 
						
							| 4 |  | eqid |  |-  ( norm ` T ) = ( norm ` T ) | 
						
							| 5 | 1 2 3 4 | nmofval |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) ) ) | 
						
							| 6 |  | ssrab2 |  |-  { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ ( 0 [,) +oo ) | 
						
							| 7 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 8 | 6 7 | sstri |  |-  { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ RR* | 
						
							| 9 |  | infxrcl |  |-  ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ RR* -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) e. RR* ) | 
						
							| 10 | 8 9 | mp1i |  |-  ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ f e. ( S GrpHom T ) ) -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) e. RR* ) | 
						
							| 11 | 5 10 | fmpt3d |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N : ( S GrpHom T ) --> RR* ) |