| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoxr.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nmoxr.2 |  |-  Y = ( BaseSet ` W ) | 
						
							| 3 |  | nmoxr.3 |  |-  N = ( U normOpOLD W ) | 
						
							| 4 | 1 2 3 | nmorepnf |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) | 
						
							| 5 |  | df-ne |  |-  ( ( N ` T ) =/= +oo <-> -. ( N ` T ) = +oo ) | 
						
							| 6 | 4 5 | bitrdi |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) | 
						
							| 7 |  | xor3 |  |-  ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) <-> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) | 
						
							| 8 |  | nbior |  |-  ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) | 
						
							| 9 | 7 8 | sylbir |  |-  ( ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) | 
						
							| 10 |  | mnfltxr |  |-  ( ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) -> -oo < ( N ` T ) ) | 
						
							| 11 | 6 9 10 | 3syl |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) ) |