Step |
Hyp |
Ref |
Expression |
1 |
|
nmoxr.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nmoxr.2 |
|- Y = ( BaseSet ` W ) |
3 |
|
nmoxr.3 |
|- N = ( U normOpOLD W ) |
4 |
1 2 3
|
nmorepnf |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |
5 |
|
df-ne |
|- ( ( N ` T ) =/= +oo <-> -. ( N ` T ) = +oo ) |
6 |
4 5
|
bitrdi |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) |
7 |
|
xor3 |
|- ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) <-> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) |
8 |
|
nbior |
|- ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) |
9 |
7 8
|
sylbir |
|- ( ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) |
10 |
|
mnfltxr |
|- ( ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) -> -oo < ( N ` T ) ) |
11 |
6 9 10
|
3syl |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) ) |