Metamath Proof Explorer


Theorem nmogtmnf

Description: The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1
|- X = ( BaseSet ` U )
nmoxr.2
|- Y = ( BaseSet ` W )
nmoxr.3
|- N = ( U normOpOLD W )
Assertion nmogtmnf
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) )

Proof

Step Hyp Ref Expression
1 nmoxr.1
 |-  X = ( BaseSet ` U )
2 nmoxr.2
 |-  Y = ( BaseSet ` W )
3 nmoxr.3
 |-  N = ( U normOpOLD W )
4 1 2 3 nmorepnf
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) )
5 df-ne
 |-  ( ( N ` T ) =/= +oo <-> -. ( N ` T ) = +oo )
6 4 5 bitrdi
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) )
7 xor3
 |-  ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) <-> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) )
8 nbior
 |-  ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) )
9 7 8 sylbir
 |-  ( ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) )
10 mnfltxr
 |-  ( ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) -> -oo < ( N ` T ) )
11 6 9 10 3syl
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) )