Step |
Hyp |
Ref |
Expression |
1 |
|
nmoid.1 |
|- N = ( S normOp S ) |
2 |
|
nmoid.2 |
|- V = ( Base ` S ) |
3 |
|
nmoid.3 |
|- .0. = ( 0g ` S ) |
4 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
5 |
|
simpl |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> S e. NrmGrp ) |
6 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
7 |
6
|
adantr |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> S e. Grp ) |
8 |
2
|
idghm |
|- ( S e. Grp -> ( _I |` V ) e. ( S GrpHom S ) ) |
9 |
7 8
|
syl |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( _I |` V ) e. ( S GrpHom S ) ) |
10 |
|
1red |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> 1 e. RR ) |
11 |
|
0le1 |
|- 0 <_ 1 |
12 |
11
|
a1i |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> 0 <_ 1 ) |
13 |
2 4
|
nmcl |
|- ( ( S e. NrmGrp /\ x e. V ) -> ( ( norm ` S ) ` x ) e. RR ) |
14 |
13
|
ad2ant2r |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
15 |
14
|
leidd |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` x ) <_ ( ( norm ` S ) ` x ) ) |
16 |
|
fvresi |
|- ( x e. V -> ( ( _I |` V ) ` x ) = x ) |
17 |
16
|
ad2antrl |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( _I |` V ) ` x ) = x ) |
18 |
17
|
fveq2d |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` ( ( _I |` V ) ` x ) ) = ( ( norm ` S ) ` x ) ) |
19 |
14
|
recnd |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` x ) e. CC ) |
20 |
19
|
mulid2d |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( 1 x. ( ( norm ` S ) ` x ) ) = ( ( norm ` S ) ` x ) ) |
21 |
15 18 20
|
3brtr4d |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` ( ( _I |` V ) ` x ) ) <_ ( 1 x. ( ( norm ` S ) ` x ) ) ) |
22 |
1 2 4 4 3 5 5 9 10 12 21
|
nmolb2d |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( N ` ( _I |` V ) ) <_ 1 ) |
23 |
|
pssnel |
|- ( { .0. } C. V -> E. x ( x e. V /\ -. x e. { .0. } ) ) |
24 |
23
|
adantl |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> E. x ( x e. V /\ -. x e. { .0. } ) ) |
25 |
|
velsn |
|- ( x e. { .0. } <-> x = .0. ) |
26 |
25
|
biimpri |
|- ( x = .0. -> x e. { .0. } ) |
27 |
26
|
necon3bi |
|- ( -. x e. { .0. } -> x =/= .0. ) |
28 |
20 18
|
eqtr4d |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( 1 x. ( ( norm ` S ) ` x ) ) = ( ( norm ` S ) ` ( ( _I |` V ) ` x ) ) ) |
29 |
1
|
nmocl |
|- ( ( S e. NrmGrp /\ S e. NrmGrp /\ ( _I |` V ) e. ( S GrpHom S ) ) -> ( N ` ( _I |` V ) ) e. RR* ) |
30 |
5 5 9 29
|
syl3anc |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( N ` ( _I |` V ) ) e. RR* ) |
31 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ S e. NrmGrp /\ ( _I |` V ) e. ( S GrpHom S ) ) -> 0 <_ ( N ` ( _I |` V ) ) ) |
32 |
5 5 9 31
|
syl3anc |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> 0 <_ ( N ` ( _I |` V ) ) ) |
33 |
|
xrrege0 |
|- ( ( ( ( N ` ( _I |` V ) ) e. RR* /\ 1 e. RR ) /\ ( 0 <_ ( N ` ( _I |` V ) ) /\ ( N ` ( _I |` V ) ) <_ 1 ) ) -> ( N ` ( _I |` V ) ) e. RR ) |
34 |
30 10 32 22 33
|
syl22anc |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( N ` ( _I |` V ) ) e. RR ) |
35 |
1
|
isnghm2 |
|- ( ( S e. NrmGrp /\ S e. NrmGrp /\ ( _I |` V ) e. ( S GrpHom S ) ) -> ( ( _I |` V ) e. ( S NGHom S ) <-> ( N ` ( _I |` V ) ) e. RR ) ) |
36 |
5 5 9 35
|
syl3anc |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( ( _I |` V ) e. ( S NGHom S ) <-> ( N ` ( _I |` V ) ) e. RR ) ) |
37 |
34 36
|
mpbird |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( _I |` V ) e. ( S NGHom S ) ) |
38 |
|
simprl |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> x e. V ) |
39 |
1 2 4 4
|
nmoi |
|- ( ( ( _I |` V ) e. ( S NGHom S ) /\ x e. V ) -> ( ( norm ` S ) ` ( ( _I |` V ) ` x ) ) <_ ( ( N ` ( _I |` V ) ) x. ( ( norm ` S ) ` x ) ) ) |
40 |
37 38 39
|
syl2an2r |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` ( ( _I |` V ) ` x ) ) <_ ( ( N ` ( _I |` V ) ) x. ( ( norm ` S ) ` x ) ) ) |
41 |
28 40
|
eqbrtrd |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( 1 x. ( ( norm ` S ) ` x ) ) <_ ( ( N ` ( _I |` V ) ) x. ( ( norm ` S ) ` x ) ) ) |
42 |
|
1red |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> 1 e. RR ) |
43 |
34
|
adantr |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( N ` ( _I |` V ) ) e. RR ) |
44 |
2 4 3
|
nmrpcl |
|- ( ( S e. NrmGrp /\ x e. V /\ x =/= .0. ) -> ( ( norm ` S ) ` x ) e. RR+ ) |
45 |
44
|
3expb |
|- ( ( S e. NrmGrp /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` x ) e. RR+ ) |
46 |
45
|
adantlr |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( ( norm ` S ) ` x ) e. RR+ ) |
47 |
42 43 46
|
lemul1d |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> ( 1 <_ ( N ` ( _I |` V ) ) <-> ( 1 x. ( ( norm ` S ) ` x ) ) <_ ( ( N ` ( _I |` V ) ) x. ( ( norm ` S ) ` x ) ) ) ) |
48 |
41 47
|
mpbird |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ x =/= .0. ) ) -> 1 <_ ( N ` ( _I |` V ) ) ) |
49 |
27 48
|
sylanr2 |
|- ( ( ( S e. NrmGrp /\ { .0. } C. V ) /\ ( x e. V /\ -. x e. { .0. } ) ) -> 1 <_ ( N ` ( _I |` V ) ) ) |
50 |
24 49
|
exlimddv |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> 1 <_ ( N ` ( _I |` V ) ) ) |
51 |
|
1xr |
|- 1 e. RR* |
52 |
|
xrletri3 |
|- ( ( ( N ` ( _I |` V ) ) e. RR* /\ 1 e. RR* ) -> ( ( N ` ( _I |` V ) ) = 1 <-> ( ( N ` ( _I |` V ) ) <_ 1 /\ 1 <_ ( N ` ( _I |` V ) ) ) ) ) |
53 |
30 51 52
|
sylancl |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( ( N ` ( _I |` V ) ) = 1 <-> ( ( N ` ( _I |` V ) ) <_ 1 /\ 1 <_ ( N ` ( _I |` V ) ) ) ) ) |
54 |
22 50 53
|
mpbir2and |
|- ( ( S e. NrmGrp /\ { .0. } C. V ) -> ( N ` ( _I |` V ) ) = 1 ) |