Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
2 |
|
nmoi.2 |
|- V = ( Base ` S ) |
3 |
|
nmoi.3 |
|- L = ( norm ` S ) |
4 |
|
nmoi.4 |
|- M = ( norm ` T ) |
5 |
1
|
isnghm2 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |
6 |
5
|
biimpar |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( N ` F ) e. RR ) -> F e. ( S NGHom T ) ) |
7 |
1 2 3 4
|
nmoi |
|- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
8 |
6 7
|
sylan |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( N ` F ) e. RR ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
9 |
8
|
an32s |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
10 |
|
id |
|- ( ( N ` F ) e. RR -> ( N ` F ) e. RR ) |
11 |
2 3
|
nmcl |
|- ( ( S e. NrmGrp /\ X e. V ) -> ( L ` X ) e. RR ) |
12 |
11
|
3ad2antl1 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( L ` X ) e. RR ) |
13 |
|
rexmul |
|- ( ( ( N ` F ) e. RR /\ ( L ` X ) e. RR ) -> ( ( N ` F ) *e ( L ` X ) ) = ( ( N ` F ) x. ( L ` X ) ) ) |
14 |
10 12 13
|
syl2anr |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( ( N ` F ) *e ( L ` X ) ) = ( ( N ` F ) x. ( L ` X ) ) ) |
15 |
9 14
|
breqtrrd |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
16 |
|
fveq2 |
|- ( X = ( 0g ` S ) -> ( F ` X ) = ( F ` ( 0g ` S ) ) ) |
17 |
16
|
fveq2d |
|- ( X = ( 0g ` S ) -> ( M ` ( F ` X ) ) = ( M ` ( F ` ( 0g ` S ) ) ) ) |
18 |
|
fveq2 |
|- ( X = ( 0g ` S ) -> ( L ` X ) = ( L ` ( 0g ` S ) ) ) |
19 |
18
|
oveq2d |
|- ( X = ( 0g ` S ) -> ( +oo *e ( L ` X ) ) = ( +oo *e ( L ` ( 0g ` S ) ) ) ) |
20 |
17 19
|
breq12d |
|- ( X = ( 0g ` S ) -> ( ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) <-> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) ) ) |
21 |
|
simpl2 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> T e. NrmGrp ) |
22 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
23 |
2 22
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
24 |
23
|
ffvelrnda |
|- ( ( F e. ( S GrpHom T ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
25 |
24
|
3ad2antl3 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
26 |
22 4
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` X ) e. ( Base ` T ) ) -> ( M ` ( F ` X ) ) e. RR ) |
27 |
21 25 26
|
syl2anc |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) e. RR ) |
28 |
27
|
adantr |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) e. RR ) |
29 |
28
|
rexrd |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) e. RR* ) |
30 |
|
pnfge |
|- ( ( M ` ( F ` X ) ) e. RR* -> ( M ` ( F ` X ) ) <_ +oo ) |
31 |
29 30
|
syl |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) <_ +oo ) |
32 |
|
simp1 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> S e. NrmGrp ) |
33 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
34 |
2 3 33
|
nmrpcl |
|- ( ( S e. NrmGrp /\ X e. V /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
35 |
34
|
3expa |
|- ( ( ( S e. NrmGrp /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
36 |
32 35
|
sylanl1 |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
37 |
|
rpxr |
|- ( ( L ` X ) e. RR+ -> ( L ` X ) e. RR* ) |
38 |
|
rpgt0 |
|- ( ( L ` X ) e. RR+ -> 0 < ( L ` X ) ) |
39 |
|
xmulpnf2 |
|- ( ( ( L ` X ) e. RR* /\ 0 < ( L ` X ) ) -> ( +oo *e ( L ` X ) ) = +oo ) |
40 |
37 38 39
|
syl2anc |
|- ( ( L ` X ) e. RR+ -> ( +oo *e ( L ` X ) ) = +oo ) |
41 |
36 40
|
syl |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( +oo *e ( L ` X ) ) = +oo ) |
42 |
31 41
|
breqtrrd |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
43 |
|
0le0 |
|- 0 <_ 0 |
44 |
|
simpl3 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> F e. ( S GrpHom T ) ) |
45 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
46 |
33 45
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
47 |
44 46
|
syl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
48 |
47
|
fveq2d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = ( M ` ( 0g ` T ) ) ) |
49 |
4 45
|
nm0 |
|- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
50 |
21 49
|
syl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( 0g ` T ) ) = 0 ) |
51 |
48 50
|
eqtrd |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = 0 ) |
52 |
|
simpl1 |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> S e. NrmGrp ) |
53 |
3 33
|
nm0 |
|- ( S e. NrmGrp -> ( L ` ( 0g ` S ) ) = 0 ) |
54 |
52 53
|
syl |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( L ` ( 0g ` S ) ) = 0 ) |
55 |
54
|
oveq2d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( +oo *e ( L ` ( 0g ` S ) ) ) = ( +oo *e 0 ) ) |
56 |
|
pnfxr |
|- +oo e. RR* |
57 |
|
xmul01 |
|- ( +oo e. RR* -> ( +oo *e 0 ) = 0 ) |
58 |
56 57
|
ax-mp |
|- ( +oo *e 0 ) = 0 |
59 |
55 58
|
eqtrdi |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( +oo *e ( L ` ( 0g ` S ) ) ) = 0 ) |
60 |
51 59
|
breq12d |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) <-> 0 <_ 0 ) ) |
61 |
43 60
|
mpbiri |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) ) |
62 |
20 42 61
|
pm2.61ne |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
63 |
62
|
adantr |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
64 |
|
simpr |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( N ` F ) = +oo ) |
65 |
64
|
oveq1d |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( ( N ` F ) *e ( L ` X ) ) = ( +oo *e ( L ` X ) ) ) |
66 |
63 65
|
breqtrrd |
|- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
67 |
1
|
nmocl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
68 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
69 |
|
ge0nemnf |
|- ( ( ( N ` F ) e. RR* /\ 0 <_ ( N ` F ) ) -> ( N ` F ) =/= -oo ) |
70 |
67 68 69
|
syl2anc |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) =/= -oo ) |
71 |
67 70
|
jca |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR* /\ ( N ` F ) =/= -oo ) ) |
72 |
|
xrnemnf |
|- ( ( ( N ` F ) e. RR* /\ ( N ` F ) =/= -oo ) <-> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
73 |
71 72
|
sylib |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
74 |
73
|
adantr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
75 |
15 66 74
|
mpjaodan |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |