| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  |-  N = ( S normOp T ) | 
						
							| 2 |  | nmofval.2 |  |-  V = ( Base ` S ) | 
						
							| 3 |  | nmofval.3 |  |-  L = ( norm ` S ) | 
						
							| 4 |  | nmofval.4 |  |-  M = ( norm ` T ) | 
						
							| 5 |  | nmolb2d.z |  |-  .0. = ( 0g ` S ) | 
						
							| 6 |  | nmolb2d.1 |  |-  ( ph -> S e. NrmGrp ) | 
						
							| 7 |  | nmolb2d.2 |  |-  ( ph -> T e. NrmGrp ) | 
						
							| 8 |  | nmolb2d.3 |  |-  ( ph -> F e. ( S GrpHom T ) ) | 
						
							| 9 |  | nmolb2d.4 |  |-  ( ph -> A e. RR ) | 
						
							| 10 |  | nmolb2d.5 |  |-  ( ph -> 0 <_ A ) | 
						
							| 11 |  | nmolb2d.6 |  |-  ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) | 
						
							| 12 |  | 2fveq3 |  |-  ( x = .0. -> ( M ` ( F ` x ) ) = ( M ` ( F ` .0. ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = .0. -> ( L ` x ) = ( L ` .0. ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( x = .0. -> ( A x. ( L ` x ) ) = ( A x. ( L ` .0. ) ) ) | 
						
							| 15 | 12 14 | breq12d |  |-  ( x = .0. -> ( ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) <-> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) ) | 
						
							| 16 | 11 | anassrs |  |-  ( ( ( ph /\ x e. V ) /\ x =/= .0. ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) | 
						
							| 17 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 18 | 9 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 19 | 18 | mul01d |  |-  ( ph -> ( A x. 0 ) = 0 ) | 
						
							| 20 | 17 19 | breqtrrid |  |-  ( ph -> 0 <_ ( A x. 0 ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 22 | 5 21 | ghmid |  |-  ( F e. ( S GrpHom T ) -> ( F ` .0. ) = ( 0g ` T ) ) | 
						
							| 23 | 8 22 | syl |  |-  ( ph -> ( F ` .0. ) = ( 0g ` T ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ph -> ( M ` ( F ` .0. ) ) = ( M ` ( 0g ` T ) ) ) | 
						
							| 25 | 4 21 | nm0 |  |-  ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) | 
						
							| 26 | 7 25 | syl |  |-  ( ph -> ( M ` ( 0g ` T ) ) = 0 ) | 
						
							| 27 | 24 26 | eqtrd |  |-  ( ph -> ( M ` ( F ` .0. ) ) = 0 ) | 
						
							| 28 | 3 5 | nm0 |  |-  ( S e. NrmGrp -> ( L ` .0. ) = 0 ) | 
						
							| 29 | 6 28 | syl |  |-  ( ph -> ( L ` .0. ) = 0 ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ph -> ( A x. ( L ` .0. ) ) = ( A x. 0 ) ) | 
						
							| 31 | 20 27 30 | 3brtr4d |  |-  ( ph -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ x e. V ) -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) | 
						
							| 33 | 15 16 32 | pm2.61ne |  |-  ( ( ph /\ x e. V ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) | 
						
							| 34 | 33 | ralrimiva |  |-  ( ph -> A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) | 
						
							| 35 | 1 2 3 4 | nmolb |  |-  ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ A e. RR /\ 0 <_ A ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) | 
						
							| 36 | 6 7 8 9 10 35 | syl311anc |  |-  ( ph -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) | 
						
							| 37 | 34 36 | mpd |  |-  ( ph -> ( N ` F ) <_ A ) |