Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
2 |
|
nmofval.2 |
|- V = ( Base ` S ) |
3 |
|
nmofval.3 |
|- L = ( norm ` S ) |
4 |
|
nmofval.4 |
|- M = ( norm ` T ) |
5 |
|
nmolb2d.z |
|- .0. = ( 0g ` S ) |
6 |
|
nmolb2d.1 |
|- ( ph -> S e. NrmGrp ) |
7 |
|
nmolb2d.2 |
|- ( ph -> T e. NrmGrp ) |
8 |
|
nmolb2d.3 |
|- ( ph -> F e. ( S GrpHom T ) ) |
9 |
|
nmolb2d.4 |
|- ( ph -> A e. RR ) |
10 |
|
nmolb2d.5 |
|- ( ph -> 0 <_ A ) |
11 |
|
nmolb2d.6 |
|- ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
12 |
|
2fveq3 |
|- ( x = .0. -> ( M ` ( F ` x ) ) = ( M ` ( F ` .0. ) ) ) |
13 |
|
fveq2 |
|- ( x = .0. -> ( L ` x ) = ( L ` .0. ) ) |
14 |
13
|
oveq2d |
|- ( x = .0. -> ( A x. ( L ` x ) ) = ( A x. ( L ` .0. ) ) ) |
15 |
12 14
|
breq12d |
|- ( x = .0. -> ( ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) <-> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) ) |
16 |
11
|
anassrs |
|- ( ( ( ph /\ x e. V ) /\ x =/= .0. ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
17 |
|
0le0 |
|- 0 <_ 0 |
18 |
9
|
recnd |
|- ( ph -> A e. CC ) |
19 |
18
|
mul01d |
|- ( ph -> ( A x. 0 ) = 0 ) |
20 |
17 19
|
breqtrrid |
|- ( ph -> 0 <_ ( A x. 0 ) ) |
21 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
22 |
5 21
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` .0. ) = ( 0g ` T ) ) |
23 |
8 22
|
syl |
|- ( ph -> ( F ` .0. ) = ( 0g ` T ) ) |
24 |
23
|
fveq2d |
|- ( ph -> ( M ` ( F ` .0. ) ) = ( M ` ( 0g ` T ) ) ) |
25 |
4 21
|
nm0 |
|- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
26 |
7 25
|
syl |
|- ( ph -> ( M ` ( 0g ` T ) ) = 0 ) |
27 |
24 26
|
eqtrd |
|- ( ph -> ( M ` ( F ` .0. ) ) = 0 ) |
28 |
3 5
|
nm0 |
|- ( S e. NrmGrp -> ( L ` .0. ) = 0 ) |
29 |
6 28
|
syl |
|- ( ph -> ( L ` .0. ) = 0 ) |
30 |
29
|
oveq2d |
|- ( ph -> ( A x. ( L ` .0. ) ) = ( A x. 0 ) ) |
31 |
20 27 30
|
3brtr4d |
|- ( ph -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ x e. V ) -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
33 |
15 16 32
|
pm2.61ne |
|- ( ( ph /\ x e. V ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
35 |
1 2 3 4
|
nmolb |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ A e. RR /\ 0 <_ A ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
36 |
6 7 8 9 10 35
|
syl311anc |
|- ( ph -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
37 |
34 36
|
mpd |
|- ( ph -> ( N ` F ) <_ A ) |