Description: The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmoleub2.n | |- N = ( S normOp T ) |
|
nmoleub2.v | |- V = ( Base ` S ) |
||
nmoleub2.l | |- L = ( norm ` S ) |
||
nmoleub2.m | |- M = ( norm ` T ) |
||
nmoleub2.g | |- G = ( Scalar ` S ) |
||
nmoleub2.w | |- K = ( Base ` G ) |
||
nmoleub2.s | |- ( ph -> S e. ( NrmMod i^i CMod ) ) |
||
nmoleub2.t | |- ( ph -> T e. ( NrmMod i^i CMod ) ) |
||
nmoleub2.f | |- ( ph -> F e. ( S LMHom T ) ) |
||
nmoleub2.a | |- ( ph -> A e. RR* ) |
||
nmoleub2.r | |- ( ph -> R e. RR+ ) |
||
nmoleub2a.5 | |- ( ph -> QQ C_ K ) |
||
Assertion | nmoleub2b | |- ( ph -> ( ( N ` F ) <_ A <-> A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoleub2.n | |- N = ( S normOp T ) |
|
2 | nmoleub2.v | |- V = ( Base ` S ) |
|
3 | nmoleub2.l | |- L = ( norm ` S ) |
|
4 | nmoleub2.m | |- M = ( norm ` T ) |
|
5 | nmoleub2.g | |- G = ( Scalar ` S ) |
|
6 | nmoleub2.w | |- K = ( Base ` G ) |
|
7 | nmoleub2.s | |- ( ph -> S e. ( NrmMod i^i CMod ) ) |
|
8 | nmoleub2.t | |- ( ph -> T e. ( NrmMod i^i CMod ) ) |
|
9 | nmoleub2.f | |- ( ph -> F e. ( S LMHom T ) ) |
|
10 | nmoleub2.a | |- ( ph -> A e. RR* ) |
|
11 | nmoleub2.r | |- ( ph -> R e. RR+ ) |
|
12 | nmoleub2a.5 | |- ( ph -> QQ C_ K ) |
|
13 | ltle | |- ( ( ( L ` x ) e. RR /\ R e. RR ) -> ( ( L ` x ) < R -> ( L ` x ) <_ R ) ) |
|
14 | idd | |- ( ( ( L ` x ) e. RR /\ R e. RR ) -> ( ( L ` x ) < R -> ( L ` x ) < R ) ) |
|
15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | nmoleub2lem2 | |- ( ph -> ( ( N ` F ) <_ A <-> A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) ) |