Step |
Hyp |
Ref |
Expression |
1 |
|
nmoleub2.n |
|- N = ( S normOp T ) |
2 |
|
nmoleub2.v |
|- V = ( Base ` S ) |
3 |
|
nmoleub2.l |
|- L = ( norm ` S ) |
4 |
|
nmoleub2.m |
|- M = ( norm ` T ) |
5 |
|
nmoleub2.g |
|- G = ( Scalar ` S ) |
6 |
|
nmoleub2.w |
|- K = ( Base ` G ) |
7 |
|
nmoleub2.s |
|- ( ph -> S e. ( NrmMod i^i CMod ) ) |
8 |
|
nmoleub2.t |
|- ( ph -> T e. ( NrmMod i^i CMod ) ) |
9 |
|
nmoleub2.f |
|- ( ph -> F e. ( S LMHom T ) ) |
10 |
|
nmoleub2.a |
|- ( ph -> A e. RR* ) |
11 |
|
nmoleub2.r |
|- ( ph -> R e. RR+ ) |
12 |
|
nmoleub2a.5 |
|- ( ph -> QQ C_ K ) |
13 |
|
nmoleub2lem3.p |
|- .x. = ( .s ` S ) |
14 |
|
nmoleub2lem3.1 |
|- ( ph -> A e. RR ) |
15 |
|
nmoleub2lem3.2 |
|- ( ph -> 0 <_ A ) |
16 |
|
nmoleub2lem3.3 |
|- ( ph -> B e. V ) |
17 |
|
nmoleub2lem3.4 |
|- ( ph -> B =/= ( 0g ` S ) ) |
18 |
|
nmoleub2lem3.5 |
|- ( ph -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
19 |
|
nmoleub2lem3.6 |
|- ( ph -> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
20 |
|
simprl |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
21 |
|
qre |
|- ( r e. QQ -> r e. RR ) |
22 |
21
|
ad2antlr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. RR ) |
23 |
11
|
rpred |
|- ( ph -> R e. RR ) |
24 |
14 23
|
remulcld |
|- ( ph -> ( A x. R ) e. RR ) |
25 |
8
|
elin1d |
|- ( ph -> T e. NrmMod ) |
26 |
|
nlmngp |
|- ( T e. NrmMod -> T e. NrmGrp ) |
27 |
25 26
|
syl |
|- ( ph -> T e. NrmGrp ) |
28 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
29 |
2 28
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) |
30 |
9 29
|
syl |
|- ( ph -> F : V --> ( Base ` T ) ) |
31 |
30 16
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. ( Base ` T ) ) |
32 |
28 4
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( F ` B ) ) e. RR ) |
33 |
27 31 32
|
syl2anc |
|- ( ph -> ( M ` ( F ` B ) ) e. RR ) |
34 |
|
0red |
|- ( ph -> 0 e. RR ) |
35 |
7
|
elin1d |
|- ( ph -> S e. NrmMod ) |
36 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
37 |
35 36
|
syl |
|- ( ph -> S e. NrmGrp ) |
38 |
2 3
|
nmcl |
|- ( ( S e. NrmGrp /\ B e. V ) -> ( L ` B ) e. RR ) |
39 |
37 16 38
|
syl2anc |
|- ( ph -> ( L ` B ) e. RR ) |
40 |
14 39
|
remulcld |
|- ( ph -> ( A x. ( L ` B ) ) e. RR ) |
41 |
2 3
|
nmge0 |
|- ( ( S e. NrmGrp /\ B e. V ) -> 0 <_ ( L ` B ) ) |
42 |
37 16 41
|
syl2anc |
|- ( ph -> 0 <_ ( L ` B ) ) |
43 |
14 39 15 42
|
mulge0d |
|- ( ph -> 0 <_ ( A x. ( L ` B ) ) ) |
44 |
40 33
|
ltnled |
|- ( ph -> ( ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) <-> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) ) |
45 |
19 44
|
mpbird |
|- ( ph -> ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) ) |
46 |
34 40 33 43 45
|
lelttrd |
|- ( ph -> 0 < ( M ` ( F ` B ) ) ) |
47 |
33 46
|
elrpd |
|- ( ph -> ( M ` ( F ` B ) ) e. RR+ ) |
48 |
24 47
|
rerpdivcld |
|- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
50 |
9
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> F e. ( S LMHom T ) ) |
51 |
12
|
sselda |
|- ( ( ph /\ r e. QQ ) -> r e. K ) |
52 |
51
|
adantr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. K ) |
53 |
16
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> B e. V ) |
54 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
55 |
5 6 2 13 54
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ r e. K /\ B e. V ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
56 |
50 52 53 55
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
57 |
56
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( M ` ( r ( .s ` T ) ( F ` B ) ) ) ) |
58 |
25
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> T e. NrmMod ) |
59 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
60 |
5 59
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = G ) |
61 |
50 60
|
syl |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Scalar ` T ) = G ) |
62 |
61
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` G ) ) |
63 |
62 6
|
eqtr4di |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = K ) |
64 |
52 63
|
eleqtrrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. ( Base ` ( Scalar ` T ) ) ) |
65 |
31
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` B ) e. ( Base ` T ) ) |
66 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
67 |
|
eqid |
|- ( norm ` ( Scalar ` T ) ) = ( norm ` ( Scalar ` T ) ) |
68 |
28 4 54 59 66 67
|
nmvs |
|- ( ( T e. NrmMod /\ r e. ( Base ` ( Scalar ` T ) ) /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
69 |
58 64 65 68
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
70 |
61
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( norm ` ( Scalar ` T ) ) = ( norm ` G ) ) |
71 |
70
|
fveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = ( ( norm ` G ) ` r ) ) |
72 |
7
|
elin2d |
|- ( ph -> S e. CMod ) |
73 |
72
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. CMod ) |
74 |
5 6
|
clmabs |
|- ( ( S e. CMod /\ r e. K ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
75 |
73 52 74
|
syl2anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
76 |
|
0red |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 e. RR ) |
77 |
11
|
rpge0d |
|- ( ph -> 0 <_ R ) |
78 |
14 23 15 77
|
mulge0d |
|- ( ph -> 0 <_ ( A x. R ) ) |
79 |
|
divge0 |
|- ( ( ( ( A x. R ) e. RR /\ 0 <_ ( A x. R ) ) /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
80 |
24 78 33 46 79
|
syl22anc |
|- ( ph -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
81 |
80
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
82 |
76 49 22 81 20
|
lelttrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 < r ) |
83 |
76 22 82
|
ltled |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ r ) |
84 |
22 83
|
absidd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = r ) |
85 |
75 84
|
eqtr3d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` G ) ` r ) = r ) |
86 |
71 85
|
eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = r ) |
87 |
86
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
88 |
57 69 87
|
3eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
89 |
88
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) = ( ( r x. ( M ` ( F ` B ) ) ) / R ) ) |
90 |
2 5 13 6
|
clmvscl |
|- ( ( S e. CMod /\ r e. K /\ B e. V ) -> ( r .x. B ) e. V ) |
91 |
73 52 53 90
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r .x. B ) e. V ) |
92 |
35
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. NrmMod ) |
93 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
94 |
2 3 13 5 6 93
|
nmvs |
|- ( ( S e. NrmMod /\ r e. K /\ B e. V ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
95 |
92 52 53 94
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
96 |
85
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) = ( r x. ( L ` B ) ) ) |
97 |
95 96
|
eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( r x. ( L ` B ) ) ) |
98 |
|
simprr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r < ( R / ( L ` B ) ) ) |
99 |
23
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR ) |
100 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
101 |
2 3 100
|
nmrpcl |
|- ( ( S e. NrmGrp /\ B e. V /\ B =/= ( 0g ` S ) ) -> ( L ` B ) e. RR+ ) |
102 |
37 16 17 101
|
syl3anc |
|- ( ph -> ( L ` B ) e. RR+ ) |
103 |
102
|
rpregt0d |
|- ( ph -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
104 |
103
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
105 |
|
ltmuldiv |
|- ( ( r e. RR /\ R e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
106 |
22 99 104 105
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
107 |
98 106
|
mpbird |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( L ` B ) ) < R ) |
108 |
97 107
|
eqbrtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) < R ) |
109 |
18
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
110 |
91 108 109
|
mp2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) |
111 |
89 110
|
eqbrtrrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A ) |
112 |
33
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) e. RR ) |
113 |
22 112
|
remulcld |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) e. RR ) |
114 |
14
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> A e. RR ) |
115 |
11
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR+ ) |
116 |
113 114 115
|
ledivmul2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A <-> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) ) |
117 |
111 116
|
mpbid |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) |
118 |
114 99
|
remulcld |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( A x. R ) e. RR ) |
119 |
33 46
|
jca |
|- ( ph -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
120 |
119
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
121 |
|
lemuldiv |
|- ( ( r e. RR /\ ( A x. R ) e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
122 |
22 118 120 121
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
123 |
117 122
|
mpbid |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
124 |
22 49 123
|
lensymd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> -. ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
125 |
20 124
|
pm2.21dd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
126 |
23 102
|
rerpdivcld |
|- ( ph -> ( R / ( L ` B ) ) e. RR ) |
127 |
14
|
recnd |
|- ( ph -> A e. CC ) |
128 |
23
|
recnd |
|- ( ph -> R e. CC ) |
129 |
39
|
recnd |
|- ( ph -> ( L ` B ) e. CC ) |
130 |
|
mulass |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( A x. ( R x. ( L ` B ) ) ) ) |
131 |
|
mul12 |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( A x. ( R x. ( L ` B ) ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
132 |
130 131
|
eqtrd |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
133 |
127 128 129 132
|
syl3anc |
|- ( ph -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
134 |
40 33 11 45
|
ltmul2dd |
|- ( ph -> ( R x. ( A x. ( L ` B ) ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
135 |
133 134
|
eqbrtrd |
|- ( ph -> ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
136 |
|
lt2mul2div |
|- ( ( ( ( A x. R ) e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) /\ ( R e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) ) -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
137 |
24 103 23 119 136
|
syl22anc |
|- ( ph -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
138 |
135 137
|
mpbid |
|- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) |
139 |
|
qbtwnre |
|- ( ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR /\ ( R / ( L ` B ) ) e. RR /\ ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
140 |
48 126 138 139
|
syl3anc |
|- ( ph -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
141 |
125 140
|
r19.29a |
|- ( ph -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
142 |
141 19
|
pm2.65i |
|- -. ph |