| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nmoofval.1 | 
							 |-  X = ( BaseSet ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							nmoofval.2 | 
							 |-  Y = ( BaseSet ` W )  | 
						
						
							| 3 | 
							
								
							 | 
							nmoofval.3 | 
							 |-  L = ( normCV ` U )  | 
						
						
							| 4 | 
							
								
							 | 
							nmoofval.4 | 
							 |-  M = ( normCV ` W )  | 
						
						
							| 5 | 
							
								
							 | 
							nmoofval.6 | 
							 |-  N = ( U normOpOLD W )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eqtr4di | 
							 |-  ( u = U -> ( BaseSet ` u ) = X )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							 |-  ( u = U -> ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) = ( ( BaseSet ` w ) ^m X ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = U -> ( normCV ` u ) = ( normCV ` U ) )  | 
						
						
							| 10 | 
							
								9 3
							 | 
							eqtr4di | 
							 |-  ( u = U -> ( normCV ` u ) = L )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq1d | 
							 |-  ( u = U -> ( ( normCV ` u ) ` z ) = ( L ` z ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							breq1d | 
							 |-  ( u = U -> ( ( ( normCV ` u ) ` z ) <_ 1 <-> ( L ` z ) <_ 1 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi1d | 
							 |-  ( u = U -> ( ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							rexeqbidv | 
							 |-  ( u = U -> ( E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							abbidv | 
							 |-  ( u = U -> { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } ) | 
						
						
							| 16 | 
							
								15
							 | 
							supeq1d | 
							 |-  ( u = U -> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) | 
						
						
							| 17 | 
							
								8 16
							 | 
							mpteq12dv | 
							 |-  ( u = U -> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = W -> ( BaseSet ` w ) = ( BaseSet ` W ) )  | 
						
						
							| 19 | 
							
								18 2
							 | 
							eqtr4di | 
							 |-  ( w = W -> ( BaseSet ` w ) = Y )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							 |-  ( w = W -> ( ( BaseSet ` w ) ^m X ) = ( Y ^m X ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = W -> ( normCV ` w ) = ( normCV ` W ) )  | 
						
						
							| 22 | 
							
								21 4
							 | 
							eqtr4di | 
							 |-  ( w = W -> ( normCV ` w ) = M )  | 
						
						
							| 23 | 
							
								22
							 | 
							fveq1d | 
							 |-  ( w = W -> ( ( normCV ` w ) ` ( t ` z ) ) = ( M ` ( t ` z ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqeq2d | 
							 |-  ( w = W -> ( x = ( ( normCV ` w ) ` ( t ` z ) ) <-> x = ( M ` ( t ` z ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							anbi2d | 
							 |-  ( w = W -> ( ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							rexbidv | 
							 |-  ( w = W -> ( E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							abbidv | 
							 |-  ( w = W -> { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } ) | 
						
						
							| 28 | 
							
								27
							 | 
							supeq1d | 
							 |-  ( w = W -> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) | 
						
						
							| 29 | 
							
								20 28
							 | 
							mpteq12dv | 
							 |-  ( w = W -> ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) | 
						
						
							| 30 | 
							
								
							 | 
							df-nmoo | 
							 |-  normOpOLD = ( u e. NrmCVec , w e. NrmCVec |-> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) | 
						
						
							| 31 | 
							
								
							 | 
							ovex | 
							 |-  ( Y ^m X ) e. _V  | 
						
						
							| 32 | 
							
								31
							 | 
							mptex | 
							 |-  ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) e. _V | 
						
						
							| 33 | 
							
								17 29 30 32
							 | 
							ovmpo | 
							 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U normOpOLD W ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) | 
						
						
							| 34 | 
							
								5 33
							 | 
							eqtrid | 
							 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> N = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |