| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 2 |
|
nmopval |
|- ( 0hop : ~H --> ~H -> ( normop ` 0hop ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) ) |
| 3 |
1 2
|
ax-mp |
|- ( normop ` 0hop ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) |
| 4 |
|
ho0val |
|- ( y e. ~H -> ( 0hop ` y ) = 0h ) |
| 5 |
4
|
fveq2d |
|- ( y e. ~H -> ( normh ` ( 0hop ` y ) ) = ( normh ` 0h ) ) |
| 6 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
| 7 |
5 6
|
eqtrdi |
|- ( y e. ~H -> ( normh ` ( 0hop ` y ) ) = 0 ) |
| 8 |
7
|
eqeq2d |
|- ( y e. ~H -> ( x = ( normh ` ( 0hop ` y ) ) <-> x = 0 ) ) |
| 9 |
8
|
anbi2d |
|- ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = 0 ) ) ) |
| 10 |
9
|
rexbiia |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) ) |
| 11 |
|
ax-hv0cl |
|- 0h e. ~H |
| 12 |
|
0le1 |
|- 0 <_ 1 |
| 13 |
|
fveq2 |
|- ( y = 0h -> ( normh ` y ) = ( normh ` 0h ) ) |
| 14 |
13 6
|
eqtrdi |
|- ( y = 0h -> ( normh ` y ) = 0 ) |
| 15 |
14
|
breq1d |
|- ( y = 0h -> ( ( normh ` y ) <_ 1 <-> 0 <_ 1 ) ) |
| 16 |
15
|
rspcev |
|- ( ( 0h e. ~H /\ 0 <_ 1 ) -> E. y e. ~H ( normh ` y ) <_ 1 ) |
| 17 |
11 12 16
|
mp2an |
|- E. y e. ~H ( normh ` y ) <_ 1 |
| 18 |
|
r19.41v |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> ( E. y e. ~H ( normh ` y ) <_ 1 /\ x = 0 ) ) |
| 19 |
17 18
|
mpbiran |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> x = 0 ) |
| 20 |
10 19
|
bitri |
|- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> x = 0 ) |
| 21 |
20
|
abbii |
|- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } = { x | x = 0 } |
| 22 |
|
df-sn |
|- { 0 } = { x | x = 0 } |
| 23 |
21 22
|
eqtr4i |
|- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } = { 0 } |
| 24 |
23
|
supeq1i |
|- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) = sup ( { 0 } , RR* , < ) |
| 25 |
|
xrltso |
|- < Or RR* |
| 26 |
|
0xr |
|- 0 e. RR* |
| 27 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
| 28 |
25 26 27
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
| 29 |
3 24 28
|
3eqtri |
|- ( normop ` 0hop ) = 0 |