Step |
Hyp |
Ref |
Expression |
1 |
|
df-ch0 |
|- 0H = { 0h } |
2 |
1
|
eqeq2i |
|- ( ~H = 0H <-> ~H = { 0h } ) |
3 |
|
feq3 |
|- ( ~H = { 0h } -> ( T : ~H --> ~H <-> T : ~H --> { 0h } ) ) |
4 |
2 3
|
sylbi |
|- ( ~H = 0H -> ( T : ~H --> ~H <-> T : ~H --> { 0h } ) ) |
5 |
|
ax-hv0cl |
|- 0h e. ~H |
6 |
5
|
elexi |
|- 0h e. _V |
7 |
6
|
fconst2 |
|- ( T : ~H --> { 0h } <-> T = ( ~H X. { 0h } ) ) |
8 |
|
df0op2 |
|- 0hop = ( ~H X. 0H ) |
9 |
1
|
xpeq2i |
|- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
10 |
8 9
|
eqtri |
|- 0hop = ( ~H X. { 0h } ) |
11 |
10
|
eqeq2i |
|- ( T = 0hop <-> T = ( ~H X. { 0h } ) ) |
12 |
7 11
|
bitr4i |
|- ( T : ~H --> { 0h } <-> T = 0hop ) |
13 |
4 12
|
bitrdi |
|- ( ~H = 0H -> ( T : ~H --> ~H <-> T = 0hop ) ) |
14 |
13
|
biimpa |
|- ( ( ~H = 0H /\ T : ~H --> ~H ) -> T = 0hop ) |
15 |
14
|
fveq2d |
|- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = ( normop ` 0hop ) ) |
16 |
|
nmop0 |
|- ( normop ` 0hop ) = 0 |
17 |
15 16
|
eqtrdi |
|- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 ) |