Step |
Hyp |
Ref |
Expression |
1 |
|
nmopadjle.1 |
|- T e. BndLinOp |
2 |
1
|
nmopadjlem |
|- ( normop ` ( adjh ` T ) ) <_ ( normop ` T ) |
3 |
|
bdopadj |
|- ( T e. BndLinOp -> T e. dom adjh ) |
4 |
1 3
|
ax-mp |
|- T e. dom adjh |
5 |
|
adjadj |
|- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
6 |
4 5
|
ax-mp |
|- ( adjh ` ( adjh ` T ) ) = T |
7 |
6
|
fveq2i |
|- ( normop ` ( adjh ` ( adjh ` T ) ) ) = ( normop ` T ) |
8 |
|
adjbdln |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
9 |
1 8
|
ax-mp |
|- ( adjh ` T ) e. BndLinOp |
10 |
9
|
nmopadjlem |
|- ( normop ` ( adjh ` ( adjh ` T ) ) ) <_ ( normop ` ( adjh ` T ) ) |
11 |
7 10
|
eqbrtrri |
|- ( normop ` T ) <_ ( normop ` ( adjh ` T ) ) |
12 |
|
nmopre |
|- ( ( adjh ` T ) e. BndLinOp -> ( normop ` ( adjh ` T ) ) e. RR ) |
13 |
9 12
|
ax-mp |
|- ( normop ` ( adjh ` T ) ) e. RR |
14 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
15 |
1 14
|
ax-mp |
|- ( normop ` T ) e. RR |
16 |
13 15
|
letri3i |
|- ( ( normop ` ( adjh ` T ) ) = ( normop ` T ) <-> ( ( normop ` ( adjh ` T ) ) <_ ( normop ` T ) /\ ( normop ` T ) <_ ( normop ` ( adjh ` T ) ) ) ) |
17 |
2 11 16
|
mpbir2an |
|- ( normop ` ( adjh ` T ) ) = ( normop ` T ) |