| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmopadjle.1 |
|- T e. BndLinOp |
| 2 |
|
bdopssadj |
|- BndLinOp C_ dom adjh |
| 3 |
2 1
|
sselii |
|- T e. dom adjh |
| 4 |
|
adjvalval |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 5 |
3 4
|
mpan |
|- ( A e. ~H -> ( ( adjh ` T ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 6 |
|
oveq2 |
|- ( z = A -> ( ( T ` v ) .ih z ) = ( ( T ` v ) .ih A ) ) |
| 7 |
6
|
eqeq1d |
|- ( z = A -> ( ( ( T ` v ) .ih z ) = ( v .ih f ) <-> ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 8 |
7
|
ralbidv |
|- ( z = A -> ( A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) <-> A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 9 |
8
|
riotabidv |
|- ( z = A -> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 10 |
|
eqid |
|- ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) = ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) |
| 11 |
|
riotaex |
|- ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) e. _V |
| 12 |
9 10 11
|
fvmpt |
|- ( A e. ~H -> ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) = ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih A ) = ( v .ih f ) ) ) |
| 13 |
5 12
|
eqtr4d |
|- ( A e. ~H -> ( ( adjh ` T ) ` A ) = ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) |
| 14 |
13
|
fveq2d |
|- ( A e. ~H -> ( normh ` ( ( adjh ` T ) ` A ) ) = ( normh ` ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) ) |
| 15 |
|
inss1 |
|- ( LinOp i^i ContOp ) C_ LinOp |
| 16 |
|
lncnbd |
|- ( LinOp i^i ContOp ) = BndLinOp |
| 17 |
1 16
|
eleqtrri |
|- T e. ( LinOp i^i ContOp ) |
| 18 |
15 17
|
sselii |
|- T e. LinOp |
| 19 |
|
inss2 |
|- ( LinOp i^i ContOp ) C_ ContOp |
| 20 |
19 17
|
sselii |
|- T e. ContOp |
| 21 |
|
eqid |
|- ( g e. ~H |-> ( ( T ` g ) .ih z ) ) = ( g e. ~H |-> ( ( T ` g ) .ih z ) ) |
| 22 |
|
oveq2 |
|- ( f = w -> ( v .ih f ) = ( v .ih w ) ) |
| 23 |
22
|
eqeq2d |
|- ( f = w -> ( ( ( T ` v ) .ih z ) = ( v .ih f ) <-> ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 24 |
23
|
ralbidv |
|- ( f = w -> ( A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) <-> A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) ) |
| 25 |
24
|
cbvriotavw |
|- ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih w ) ) |
| 26 |
18 20 21 25 10
|
cnlnadjlem7 |
|- ( A e. ~H -> ( normh ` ( ( z e. ~H |-> ( iota_ f e. ~H A. v e. ~H ( ( T ` v ) .ih z ) = ( v .ih f ) ) ) ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 27 |
14 26
|
eqbrtrd |
|- ( A e. ~H -> ( normh ` ( ( adjh ` T ) ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |