Step |
Hyp |
Ref |
Expression |
1 |
|
nmopcoadj.1 |
|- T e. BndLinOp |
2 |
1
|
nmopcoadj2i |
|- ( normop ` ( T o. ( adjh ` T ) ) ) = ( ( normop ` T ) ^ 2 ) |
3 |
2
|
eqeq1i |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( ( normop ` T ) ^ 2 ) = 0 ) |
4 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
5 |
1 4
|
ax-mp |
|- ( normop ` T ) e. RR |
6 |
5
|
recni |
|- ( normop ` T ) e. CC |
7 |
6
|
sqeq0i |
|- ( ( ( normop ` T ) ^ 2 ) = 0 <-> ( normop ` T ) = 0 ) |
8 |
3 7
|
bitri |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( normop ` T ) = 0 ) |
9 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
10 |
1 9
|
ax-mp |
|- T e. LinOp |
11 |
|
adjbdln |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
12 |
1 11
|
ax-mp |
|- ( adjh ` T ) e. BndLinOp |
13 |
|
bdopln |
|- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` T ) e. LinOp ) |
14 |
12 13
|
ax-mp |
|- ( adjh ` T ) e. LinOp |
15 |
10 14
|
lnopcoi |
|- ( T o. ( adjh ` T ) ) e. LinOp |
16 |
15
|
nmlnop0iHIL |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( T o. ( adjh ` T ) ) = 0hop ) |
17 |
10
|
nmlnop0iHIL |
|- ( ( normop ` T ) = 0 <-> T = 0hop ) |
18 |
8 16 17
|
3bitr3i |
|- ( ( T o. ( adjh ` T ) ) = 0hop <-> T = 0hop ) |