Step |
Hyp |
Ref |
Expression |
1 |
|
nmopcoadj.1 |
|- T e. BndLinOp |
2 |
|
adjbdln |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
3 |
1 2
|
ax-mp |
|- ( adjh ` T ) e. BndLinOp |
4 |
3
|
nmopcoadji |
|- ( normop ` ( ( adjh ` ( adjh ` T ) ) o. ( adjh ` T ) ) ) = ( ( normop ` ( adjh ` T ) ) ^ 2 ) |
5 |
|
bdopadj |
|- ( T e. BndLinOp -> T e. dom adjh ) |
6 |
1 5
|
ax-mp |
|- T e. dom adjh |
7 |
|
adjadj |
|- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
8 |
6 7
|
ax-mp |
|- ( adjh ` ( adjh ` T ) ) = T |
9 |
8
|
coeq1i |
|- ( ( adjh ` ( adjh ` T ) ) o. ( adjh ` T ) ) = ( T o. ( adjh ` T ) ) |
10 |
9
|
fveq2i |
|- ( normop ` ( ( adjh ` ( adjh ` T ) ) o. ( adjh ` T ) ) ) = ( normop ` ( T o. ( adjh ` T ) ) ) |
11 |
1
|
nmopadji |
|- ( normop ` ( adjh ` T ) ) = ( normop ` T ) |
12 |
11
|
oveq1i |
|- ( ( normop ` ( adjh ` T ) ) ^ 2 ) = ( ( normop ` T ) ^ 2 ) |
13 |
4 10 12
|
3eqtr3i |
|- ( normop ` ( T o. ( adjh ` T ) ) ) = ( ( normop ` T ) ^ 2 ) |