Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
|- S e. BndLinOp |
2 |
|
nmoptri.2 |
|- T e. BndLinOp |
3 |
|
bdopln |
|- ( S e. BndLinOp -> S e. LinOp ) |
4 |
1 3
|
ax-mp |
|- S e. LinOp |
5 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
6 |
2 5
|
ax-mp |
|- T e. LinOp |
7 |
4 6
|
lnopcoi |
|- ( S o. T ) e. LinOp |
8 |
7
|
lnopfi |
|- ( S o. T ) : ~H --> ~H |
9 |
|
nmopre |
|- ( S e. BndLinOp -> ( normop ` S ) e. RR ) |
10 |
1 9
|
ax-mp |
|- ( normop ` S ) e. RR |
11 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
12 |
2 11
|
ax-mp |
|- ( normop ` T ) e. RR |
13 |
10 12
|
remulcli |
|- ( ( normop ` S ) x. ( normop ` T ) ) e. RR |
14 |
13
|
rexri |
|- ( ( normop ` S ) x. ( normop ` T ) ) e. RR* |
15 |
|
nmopub |
|- ( ( ( S o. T ) : ~H --> ~H /\ ( ( normop ` S ) x. ( normop ` T ) ) e. RR* ) -> ( ( normop ` ( S o. T ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) ) |
16 |
8 14 15
|
mp2an |
|- ( ( normop ` ( S o. T ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) |
17 |
|
0le0 |
|- 0 <_ 0 |
18 |
17
|
a1i |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> 0 <_ 0 ) |
19 |
4 6
|
lnopco0i |
|- ( ( normop ` T ) = 0 -> ( normop ` ( S o. T ) ) = 0 ) |
20 |
7
|
nmlnop0iHIL |
|- ( ( normop ` ( S o. T ) ) = 0 <-> ( S o. T ) = 0hop ) |
21 |
19 20
|
sylib |
|- ( ( normop ` T ) = 0 -> ( S o. T ) = 0hop ) |
22 |
|
fveq1 |
|- ( ( S o. T ) = 0hop -> ( ( S o. T ) ` x ) = ( 0hop ` x ) ) |
23 |
22
|
fveq2d |
|- ( ( S o. T ) = 0hop -> ( normh ` ( ( S o. T ) ` x ) ) = ( normh ` ( 0hop ` x ) ) ) |
24 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
25 |
24
|
fveq2d |
|- ( x e. ~H -> ( normh ` ( 0hop ` x ) ) = ( normh ` 0h ) ) |
26 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
27 |
25 26
|
eqtrdi |
|- ( x e. ~H -> ( normh ` ( 0hop ` x ) ) = 0 ) |
28 |
23 27
|
sylan9eq |
|- ( ( ( S o. T ) = 0hop /\ x e. ~H ) -> ( normh ` ( ( S o. T ) ` x ) ) = 0 ) |
29 |
21 28
|
sylan |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( normh ` ( ( S o. T ) ` x ) ) = 0 ) |
30 |
|
oveq2 |
|- ( ( normop ` T ) = 0 -> ( ( normop ` S ) x. ( normop ` T ) ) = ( ( normop ` S ) x. 0 ) ) |
31 |
10
|
recni |
|- ( normop ` S ) e. CC |
32 |
31
|
mul01i |
|- ( ( normop ` S ) x. 0 ) = 0 |
33 |
30 32
|
eqtrdi |
|- ( ( normop ` T ) = 0 -> ( ( normop ` S ) x. ( normop ` T ) ) = 0 ) |
34 |
33
|
adantr |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( ( normop ` S ) x. ( normop ` T ) ) = 0 ) |
35 |
18 29 34
|
3brtr4d |
|- ( ( ( normop ` T ) = 0 /\ x e. ~H ) -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) |
36 |
35
|
adantrr |
|- ( ( ( normop ` T ) = 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) |
37 |
|
df-ne |
|- ( ( normop ` T ) =/= 0 <-> -. ( normop ` T ) = 0 ) |
38 |
8
|
ffvelrni |
|- ( x e. ~H -> ( ( S o. T ) ` x ) e. ~H ) |
39 |
|
normcl |
|- ( ( ( S o. T ) ` x ) e. ~H -> ( normh ` ( ( S o. T ) ` x ) ) e. RR ) |
40 |
38 39
|
syl |
|- ( x e. ~H -> ( normh ` ( ( S o. T ) ` x ) ) e. RR ) |
41 |
40
|
recnd |
|- ( x e. ~H -> ( normh ` ( ( S o. T ) ` x ) ) e. CC ) |
42 |
12
|
recni |
|- ( normop ` T ) e. CC |
43 |
|
divrec2 |
|- ( ( ( normh ` ( ( S o. T ) ` x ) ) e. CC /\ ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
44 |
42 43
|
mp3an2 |
|- ( ( ( normh ` ( ( S o. T ) ` x ) ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
45 |
41 44
|
sylan |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
46 |
45
|
ancoms |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
47 |
12
|
rerecclzi |
|- ( ( normop ` T ) =/= 0 -> ( 1 / ( normop ` T ) ) e. RR ) |
48 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
49 |
2 48
|
ax-mp |
|- T : ~H --> ~H |
50 |
|
nmopgt0 |
|- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |
51 |
49 50
|
ax-mp |
|- ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) |
52 |
12
|
recgt0i |
|- ( 0 < ( normop ` T ) -> 0 < ( 1 / ( normop ` T ) ) ) |
53 |
51 52
|
sylbi |
|- ( ( normop ` T ) =/= 0 -> 0 < ( 1 / ( normop ` T ) ) ) |
54 |
|
0re |
|- 0 e. RR |
55 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normop ` T ) ) e. RR ) -> ( 0 < ( 1 / ( normop ` T ) ) -> 0 <_ ( 1 / ( normop ` T ) ) ) ) |
56 |
54 55
|
mpan |
|- ( ( 1 / ( normop ` T ) ) e. RR -> ( 0 < ( 1 / ( normop ` T ) ) -> 0 <_ ( 1 / ( normop ` T ) ) ) ) |
57 |
47 53 56
|
sylc |
|- ( ( normop ` T ) =/= 0 -> 0 <_ ( 1 / ( normop ` T ) ) ) |
58 |
47 57
|
absidd |
|- ( ( normop ` T ) =/= 0 -> ( abs ` ( 1 / ( normop ` T ) ) ) = ( 1 / ( normop ` T ) ) ) |
59 |
58
|
adantr |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( abs ` ( 1 / ( normop ` T ) ) ) = ( 1 / ( normop ` T ) ) ) |
60 |
59
|
oveq1d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
61 |
46 60
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
62 |
42
|
recclzi |
|- ( ( normop ` T ) =/= 0 -> ( 1 / ( normop ` T ) ) e. CC ) |
63 |
|
norm-iii |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( ( S o. T ) ` x ) e. ~H ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
64 |
62 38 63
|
syl2an |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( ( S o. T ) ` x ) ) ) ) |
65 |
61 64
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( normh ` ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) ) ) |
66 |
49
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
67 |
4
|
lnopmuli |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( 1 / ( normop ` T ) ) .h ( S ` ( T ` x ) ) ) ) |
68 |
62 66 67
|
syl2an |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( 1 / ( normop ` T ) ) .h ( S ` ( T ` x ) ) ) ) |
69 |
|
bdopf |
|- ( S e. BndLinOp -> S : ~H --> ~H ) |
70 |
1 69
|
ax-mp |
|- S : ~H --> ~H |
71 |
70 49
|
hocoi |
|- ( x e. ~H -> ( ( S o. T ) ` x ) = ( S ` ( T ` x ) ) ) |
72 |
71
|
oveq2d |
|- ( x e. ~H -> ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) = ( ( 1 / ( normop ` T ) ) .h ( S ` ( T ` x ) ) ) ) |
73 |
72
|
adantl |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) = ( ( 1 / ( normop ` T ) ) .h ( S ` ( T ` x ) ) ) ) |
74 |
68 73
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) ) |
75 |
74
|
fveq2d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) = ( normh ` ( ( 1 / ( normop ` T ) ) .h ( ( S o. T ) ` x ) ) ) ) |
76 |
65 75
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) ) |
77 |
76
|
adantrr |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) = ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) ) |
78 |
|
hvmulcl |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) e. ~H ) |
79 |
62 66 78
|
syl2an |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) e. ~H ) |
80 |
79
|
adantrr |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) e. ~H ) |
81 |
|
norm-iii |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( T ` x ) ) ) ) |
82 |
62 66 81
|
syl2an |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( T ` x ) ) ) ) |
83 |
|
normcl |
|- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
84 |
66 83
|
syl |
|- ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
85 |
84
|
recnd |
|- ( x e. ~H -> ( normh ` ( T ` x ) ) e. CC ) |
86 |
|
divrec2 |
|- ( ( ( normh ` ( T ` x ) ) e. CC /\ ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( T ` x ) ) ) ) |
87 |
42 86
|
mp3an2 |
|- ( ( ( normh ` ( T ` x ) ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( T ` x ) ) ) ) |
88 |
85 87
|
sylan |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( T ` x ) ) ) ) |
89 |
88
|
ancoms |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( T ` x ) ) ) ) |
90 |
59
|
oveq1d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( T ` x ) ) ) = ( ( 1 / ( normop ` T ) ) x. ( normh ` ( T ` x ) ) ) ) |
91 |
89 90
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) = ( ( abs ` ( 1 / ( normop ` T ) ) ) x. ( normh ` ( T ` x ) ) ) ) |
92 |
82 91
|
eqtr4d |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) ) |
93 |
92
|
adantrr |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) = ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) ) |
94 |
|
nmoplb |
|- ( ( T : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
95 |
49 94
|
mp3an1 |
|- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
96 |
42
|
mulid2i |
|- ( 1 x. ( normop ` T ) ) = ( normop ` T ) |
97 |
95 96
|
breqtrrdi |
|- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) |
98 |
97
|
adantl |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) |
99 |
84
|
adantr |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> ( normh ` ( T ` x ) ) e. RR ) |
100 |
|
1red |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> 1 e. RR ) |
101 |
12
|
a1i |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> ( normop ` T ) e. RR ) |
102 |
51
|
biimpi |
|- ( ( normop ` T ) =/= 0 -> 0 < ( normop ` T ) ) |
103 |
102
|
adantl |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> 0 < ( normop ` T ) ) |
104 |
|
ledivmul2 |
|- ( ( ( normh ` ( T ` x ) ) e. RR /\ 1 e. RR /\ ( ( normop ` T ) e. RR /\ 0 < ( normop ` T ) ) ) -> ( ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) <_ 1 <-> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) ) |
105 |
99 100 101 103 104
|
syl112anc |
|- ( ( x e. ~H /\ ( normop ` T ) =/= 0 ) -> ( ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) <_ 1 <-> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) ) |
106 |
105
|
ancoms |
|- ( ( ( normop ` T ) =/= 0 /\ x e. ~H ) -> ( ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) <_ 1 <-> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) ) |
107 |
106
|
adantrr |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) <_ 1 <-> ( normh ` ( T ` x ) ) <_ ( 1 x. ( normop ` T ) ) ) ) |
108 |
98 107
|
mpbird |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( normh ` ( T ` x ) ) / ( normop ` T ) ) <_ 1 ) |
109 |
93 108
|
eqbrtrd |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) <_ 1 ) |
110 |
|
nmoplb |
|- ( ( S : ~H --> ~H /\ ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) e. ~H /\ ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) <_ 1 ) -> ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) <_ ( normop ` S ) ) |
111 |
70 110
|
mp3an1 |
|- ( ( ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) e. ~H /\ ( normh ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) <_ 1 ) -> ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) <_ ( normop ` S ) ) |
112 |
80 109 111
|
syl2anc |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( S ` ( ( 1 / ( normop ` T ) ) .h ( T ` x ) ) ) ) <_ ( normop ` S ) ) |
113 |
77 112
|
eqbrtrd |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) <_ ( normop ` S ) ) |
114 |
40
|
ad2antrl |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( S o. T ) ` x ) ) e. RR ) |
115 |
10
|
a1i |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normop ` S ) e. RR ) |
116 |
102
|
adantr |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> 0 < ( normop ` T ) ) |
117 |
116 12
|
jctil |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( normop ` T ) e. RR /\ 0 < ( normop ` T ) ) ) |
118 |
|
ledivmul2 |
|- ( ( ( normh ` ( ( S o. T ) ` x ) ) e. RR /\ ( normop ` S ) e. RR /\ ( ( normop ` T ) e. RR /\ 0 < ( normop ` T ) ) ) -> ( ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) <_ ( normop ` S ) <-> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) |
119 |
114 115 117 118
|
syl3anc |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( ( ( normh ` ( ( S o. T ) ` x ) ) / ( normop ` T ) ) <_ ( normop ` S ) <-> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) |
120 |
113 119
|
mpbid |
|- ( ( ( normop ` T ) =/= 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) |
121 |
37 120
|
sylanbr |
|- ( ( -. ( normop ` T ) = 0 /\ ( x e. ~H /\ ( normh ` x ) <_ 1 ) ) -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) |
122 |
36 121
|
pm2.61ian |
|- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) |
123 |
122
|
ex |
|- ( x e. ~H -> ( ( normh ` x ) <_ 1 -> ( normh ` ( ( S o. T ) ` x ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) ) ) |
124 |
16 123
|
mprgbir |
|- ( normop ` ( S o. T ) ) <_ ( ( normop ` S ) x. ( normop ` T ) ) |