Step |
Hyp |
Ref |
Expression |
1 |
|
nmopxr |
|- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
2 |
|
nmopge0 |
|- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
3 |
|
0xr |
|- 0 e. RR* |
4 |
|
xrleltne |
|- ( ( 0 e. RR* /\ ( normop ` T ) e. RR* /\ 0 <_ ( normop ` T ) ) -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
5 |
3 4
|
mp3an1 |
|- ( ( ( normop ` T ) e. RR* /\ 0 <_ ( normop ` T ) ) -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
6 |
1 2 5
|
syl2anc |
|- ( T : ~H --> ~H -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
7 |
6
|
bicomd |
|- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |