Step |
Hyp |
Ref |
Expression |
1 |
|
nmoprepnf |
|- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |
2 |
|
df-ne |
|- ( ( normop ` T ) =/= +oo <-> -. ( normop ` T ) = +oo ) |
3 |
1 2
|
bitrdi |
|- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) ) |
4 |
|
xor3 |
|- ( -. ( ( normop ` T ) e. RR <-> ( normop ` T ) = +oo ) <-> ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) ) |
5 |
|
nbior |
|- ( -. ( ( normop ` T ) e. RR <-> ( normop ` T ) = +oo ) -> ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) ) |
6 |
4 5
|
sylbir |
|- ( ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) -> ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) ) |
7 |
|
mnfltxr |
|- ( ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) -> -oo < ( normop ` T ) ) |
8 |
3 6 7
|
3syl |
|- ( T : ~H --> ~H -> -oo < ( normop ` T ) ) |