Step |
Hyp |
Ref |
Expression |
1 |
|
nmophm.1 |
|- T e. BndLinOp |
2 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
3 |
1 2
|
ax-mp |
|- T : ~H --> ~H |
4 |
|
homval |
|- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
5 |
3 4
|
mp3an2 |
|- ( ( A e. CC /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
6 |
5
|
fveq2d |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( normh ` ( A .h ( T ` x ) ) ) ) |
7 |
3
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
8 |
|
norm-iii |
|- ( ( A e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
9 |
7 8
|
sylan2 |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
10 |
6 9
|
eqtrd |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
11 |
10
|
adantr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
12 |
|
normcl |
|- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
13 |
7 12
|
syl |
|- ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
14 |
13
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) e. RR ) |
15 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
16 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
17 |
15 16
|
jca |
|- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
18 |
17
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
19 |
|
nmoplb |
|- ( ( T : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
20 |
3 19
|
mp3an1 |
|- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
21 |
20
|
adantll |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
22 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
23 |
1 22
|
ax-mp |
|- ( normop ` T ) e. RR |
24 |
|
lemul2a |
|- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
25 |
23 24
|
mp3anl2 |
|- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
26 |
14 18 21 25
|
syl21anc |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
27 |
11 26
|
eqbrtrd |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
28 |
27
|
ex |
|- ( ( A e. CC /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
29 |
28
|
ralrimiva |
|- ( A e. CC -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
30 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
31 |
3 30
|
mpan2 |
|- ( A e. CC -> ( A .op T ) : ~H --> ~H ) |
32 |
|
remulcl |
|- ( ( ( abs ` A ) e. RR /\ ( normop ` T ) e. RR ) -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
33 |
15 23 32
|
sylancl |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
34 |
33
|
rexrd |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) |
35 |
|
nmopub |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
36 |
31 34 35
|
syl2anc |
|- ( A e. CC -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
37 |
29 36
|
mpbird |
|- ( A e. CC -> ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
38 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
39 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
40 |
38 39
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
41 |
40
|
oveq1d |
|- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = ( 0 x. ( normop ` T ) ) ) |
42 |
23
|
recni |
|- ( normop ` T ) e. CC |
43 |
42
|
mul02i |
|- ( 0 x. ( normop ` T ) ) = 0 |
44 |
41 43
|
eqtrdi |
|- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
45 |
44
|
adantl |
|- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
46 |
|
nmopge0 |
|- ( ( A .op T ) : ~H --> ~H -> 0 <_ ( normop ` ( A .op T ) ) ) |
47 |
31 46
|
syl |
|- ( A e. CC -> 0 <_ ( normop ` ( A .op T ) ) ) |
48 |
47
|
adantr |
|- ( ( A e. CC /\ A = 0 ) -> 0 <_ ( normop ` ( A .op T ) ) ) |
49 |
45 48
|
eqbrtrd |
|- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
50 |
|
nmoplb |
|- ( ( ( A .op T ) : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
51 |
31 50
|
syl3an1 |
|- ( ( A e. CC /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
52 |
51
|
3expa |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
53 |
11 52
|
eqbrtrrd |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
54 |
53
|
adantllr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
55 |
13
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
56 |
|
nmopxr |
|- ( ( A .op T ) : ~H --> ~H -> ( normop ` ( A .op T ) ) e. RR* ) |
57 |
31 56
|
syl |
|- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR* ) |
58 |
|
nmopgtmnf |
|- ( ( A .op T ) : ~H --> ~H -> -oo < ( normop ` ( A .op T ) ) ) |
59 |
31 58
|
syl |
|- ( A e. CC -> -oo < ( normop ` ( A .op T ) ) ) |
60 |
|
xrre |
|- ( ( ( ( normop ` ( A .op T ) ) e. RR* /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) /\ ( -oo < ( normop ` ( A .op T ) ) /\ ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) -> ( normop ` ( A .op T ) ) e. RR ) |
61 |
57 33 59 37 60
|
syl22anc |
|- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR ) |
62 |
61
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normop ` ( A .op T ) ) e. RR ) |
63 |
15
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( abs ` A ) e. RR ) |
64 |
|
absgt0 |
|- ( A e. CC -> ( A =/= 0 <-> 0 < ( abs ` A ) ) ) |
65 |
64
|
biimpa |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 < ( abs ` A ) ) |
66 |
65
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> 0 < ( abs ` A ) ) |
67 |
|
lemuldiv2 |
|- ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
68 |
55 62 63 66 67
|
syl112anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
69 |
68
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
70 |
54 69
|
mpbid |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
71 |
70
|
ex |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
72 |
71
|
ralrimiva |
|- ( ( A e. CC /\ A =/= 0 ) -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
73 |
61
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` ( A .op T ) ) e. RR ) |
74 |
15
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
75 |
|
abs00 |
|- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
76 |
75
|
necon3bid |
|- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
77 |
76
|
biimpar |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
78 |
73 74 77
|
redivcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR ) |
79 |
78
|
rexrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) |
80 |
|
nmopub |
|- ( ( T : ~H --> ~H /\ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
81 |
3 79 80
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
82 |
72 81
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
83 |
23
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) e. RR ) |
84 |
|
lemuldiv2 |
|- ( ( ( normop ` T ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
85 |
83 73 74 65 84
|
syl112anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
86 |
82 85
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
87 |
49 86
|
pm2.61dane |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
88 |
61 33
|
letri3d |
|- ( A e. CC -> ( ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) <-> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) /\ ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) ) ) |
89 |
37 87 88
|
mpbir2and |
|- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |