| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmophm.1 |
|- T e. BndLinOp |
| 2 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
| 3 |
1 2
|
ax-mp |
|- T : ~H --> ~H |
| 4 |
|
homval |
|- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 5 |
3 4
|
mp3an2 |
|- ( ( A e. CC /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( normh ` ( A .h ( T ` x ) ) ) ) |
| 7 |
3
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 8 |
|
norm-iii |
|- ( ( A e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 10 |
6 9
|
eqtrd |
|- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 11 |
10
|
adantr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 12 |
|
normcl |
|- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
| 13 |
7 12
|
syl |
|- ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) e. RR ) |
| 15 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 16 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 17 |
15 16
|
jca |
|- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 19 |
|
nmoplb |
|- ( ( T : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
| 20 |
3 19
|
mp3an1 |
|- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
| 21 |
20
|
adantll |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
| 22 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
| 23 |
1 22
|
ax-mp |
|- ( normop ` T ) e. RR |
| 24 |
|
lemul2a |
|- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 25 |
23 24
|
mp3anl2 |
|- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 26 |
14 18 21 25
|
syl21anc |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 27 |
11 26
|
eqbrtrd |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 28 |
27
|
ex |
|- ( ( A e. CC /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
| 29 |
28
|
ralrimiva |
|- ( A e. CC -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
| 30 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
| 31 |
3 30
|
mpan2 |
|- ( A e. CC -> ( A .op T ) : ~H --> ~H ) |
| 32 |
|
remulcl |
|- ( ( ( abs ` A ) e. RR /\ ( normop ` T ) e. RR ) -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 33 |
15 23 32
|
sylancl |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 34 |
33
|
rexrd |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) |
| 35 |
|
nmopub |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
| 36 |
31 34 35
|
syl2anc |
|- ( A e. CC -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
| 37 |
29 36
|
mpbird |
|- ( A e. CC -> ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 38 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
| 39 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 40 |
38 39
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
| 41 |
40
|
oveq1d |
|- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = ( 0 x. ( normop ` T ) ) ) |
| 42 |
23
|
recni |
|- ( normop ` T ) e. CC |
| 43 |
42
|
mul02i |
|- ( 0 x. ( normop ` T ) ) = 0 |
| 44 |
41 43
|
eqtrdi |
|- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
| 45 |
44
|
adantl |
|- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
| 46 |
|
nmopge0 |
|- ( ( A .op T ) : ~H --> ~H -> 0 <_ ( normop ` ( A .op T ) ) ) |
| 47 |
31 46
|
syl |
|- ( A e. CC -> 0 <_ ( normop ` ( A .op T ) ) ) |
| 48 |
47
|
adantr |
|- ( ( A e. CC /\ A = 0 ) -> 0 <_ ( normop ` ( A .op T ) ) ) |
| 49 |
45 48
|
eqbrtrd |
|- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 50 |
|
nmoplb |
|- ( ( ( A .op T ) : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
| 51 |
31 50
|
syl3an1 |
|- ( ( A e. CC /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
| 52 |
51
|
3expa |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
| 53 |
11 52
|
eqbrtrrd |
|- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
| 54 |
53
|
adantllr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
| 55 |
13
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
| 56 |
|
nmopxr |
|- ( ( A .op T ) : ~H --> ~H -> ( normop ` ( A .op T ) ) e. RR* ) |
| 57 |
31 56
|
syl |
|- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR* ) |
| 58 |
|
nmopgtmnf |
|- ( ( A .op T ) : ~H --> ~H -> -oo < ( normop ` ( A .op T ) ) ) |
| 59 |
31 58
|
syl |
|- ( A e. CC -> -oo < ( normop ` ( A .op T ) ) ) |
| 60 |
|
xrre |
|- ( ( ( ( normop ` ( A .op T ) ) e. RR* /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) /\ ( -oo < ( normop ` ( A .op T ) ) /\ ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) -> ( normop ` ( A .op T ) ) e. RR ) |
| 61 |
57 33 59 37 60
|
syl22anc |
|- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normop ` ( A .op T ) ) e. RR ) |
| 63 |
15
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( abs ` A ) e. RR ) |
| 64 |
|
absgt0 |
|- ( A e. CC -> ( A =/= 0 <-> 0 < ( abs ` A ) ) ) |
| 65 |
64
|
biimpa |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 < ( abs ` A ) ) |
| 66 |
65
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> 0 < ( abs ` A ) ) |
| 67 |
|
lemuldiv2 |
|- ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 68 |
55 62 63 66 67
|
syl112anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 70 |
54 69
|
mpbid |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
| 71 |
70
|
ex |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 72 |
71
|
ralrimiva |
|- ( ( A e. CC /\ A =/= 0 ) -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 73 |
61
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` ( A .op T ) ) e. RR ) |
| 74 |
15
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 75 |
|
abs00 |
|- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
| 76 |
75
|
necon3bid |
|- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 77 |
76
|
biimpar |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 78 |
73 74 77
|
redivcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR ) |
| 79 |
78
|
rexrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) |
| 80 |
|
nmopub |
|- ( ( T : ~H --> ~H /\ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
| 81 |
3 79 80
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
| 82 |
72 81
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
| 83 |
23
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) e. RR ) |
| 84 |
|
lemuldiv2 |
|- ( ( ( normop ` T ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 85 |
83 73 74 65 84
|
syl112anc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 86 |
82 85
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 87 |
49 86
|
pm2.61dane |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 88 |
61 33
|
letri3d |
|- ( A e. CC -> ( ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) <-> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) /\ ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) ) ) |
| 89 |
37 87 88
|
mpbir2and |
|- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |