Step |
Hyp |
Ref |
Expression |
1 |
|
nmoprepnf |
|- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |
2 |
|
nmopxr |
|- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
3 |
|
nltpnft |
|- ( ( normop ` T ) e. RR* -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) |
4 |
2 3
|
syl |
|- ( T : ~H --> ~H -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) |
5 |
4
|
necon2abid |
|- ( T : ~H --> ~H -> ( ( normop ` T ) < +oo <-> ( normop ` T ) =/= +oo ) ) |
6 |
1 5
|
bitr4d |
|- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) ) |