| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoprepnf |  |-  ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) | 
						
							| 2 |  | nmopxr |  |-  ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) | 
						
							| 3 |  | nltpnft |  |-  ( ( normop ` T ) e. RR* -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( T : ~H --> ~H -> ( ( normop ` T ) = +oo <-> -. ( normop ` T ) < +oo ) ) | 
						
							| 5 | 4 | necon2abid |  |-  ( T : ~H --> ~H -> ( ( normop ` T ) < +oo <-> ( normop ` T ) =/= +oo ) ) | 
						
							| 6 | 1 5 | bitr4d |  |-  ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) < +oo ) ) |