Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
|- S e. BndLinOp |
2 |
|
nmoptri.2 |
|- T e. BndLinOp |
3 |
1 2
|
bdophsi |
|- ( S +op T ) e. BndLinOp |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
2
|
bdophmi |
|- ( -u 1 e. CC -> ( -u 1 .op T ) e. BndLinOp ) |
6 |
4 5
|
ax-mp |
|- ( -u 1 .op T ) e. BndLinOp |
7 |
3 6
|
nmoptrii |
|- ( normop ` ( ( S +op T ) +op ( -u 1 .op T ) ) ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` ( -u 1 .op T ) ) ) |
8 |
|
bdopf |
|- ( S e. BndLinOp -> S : ~H --> ~H ) |
9 |
1 8
|
ax-mp |
|- S : ~H --> ~H |
10 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
11 |
2 10
|
ax-mp |
|- T : ~H --> ~H |
12 |
9 11
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
13 |
12 11
|
honegsubi |
|- ( ( S +op T ) +op ( -u 1 .op T ) ) = ( ( S +op T ) -op T ) |
14 |
9 11
|
hopncani |
|- ( ( S +op T ) -op T ) = S |
15 |
13 14
|
eqtri |
|- ( ( S +op T ) +op ( -u 1 .op T ) ) = S |
16 |
15
|
fveq2i |
|- ( normop ` ( ( S +op T ) +op ( -u 1 .op T ) ) ) = ( normop ` S ) |
17 |
11
|
nmopnegi |
|- ( normop ` ( -u 1 .op T ) ) = ( normop ` T ) |
18 |
17
|
oveq2i |
|- ( ( normop ` ( S +op T ) ) + ( normop ` ( -u 1 .op T ) ) ) = ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) |
19 |
7 16 18
|
3brtr3i |
|- ( normop ` S ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) |
20 |
|
nmopre |
|- ( S e. BndLinOp -> ( normop ` S ) e. RR ) |
21 |
1 20
|
ax-mp |
|- ( normop ` S ) e. RR |
22 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
23 |
2 22
|
ax-mp |
|- ( normop ` T ) e. RR |
24 |
|
nmopre |
|- ( ( S +op T ) e. BndLinOp -> ( normop ` ( S +op T ) ) e. RR ) |
25 |
3 24
|
ax-mp |
|- ( normop ` ( S +op T ) ) e. RR |
26 |
21 23 25
|
lesubaddi |
|- ( ( ( normop ` S ) - ( normop ` T ) ) <_ ( normop ` ( S +op T ) ) <-> ( normop ` S ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) ) |
27 |
19 26
|
mpbir |
|- ( ( normop ` S ) - ( normop ` T ) ) <_ ( normop ` ( S +op T ) ) |