Metamath Proof Explorer


Theorem nmoreltpnf

Description: The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1
|- X = ( BaseSet ` U )
nmoxr.2
|- Y = ( BaseSet ` W )
nmoxr.3
|- N = ( U normOpOLD W )
Assertion nmoreltpnf
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) < +oo ) )

Proof

Step Hyp Ref Expression
1 nmoxr.1
 |-  X = ( BaseSet ` U )
2 nmoxr.2
 |-  Y = ( BaseSet ` W )
3 nmoxr.3
 |-  N = ( U normOpOLD W )
4 1 2 3 nmorepnf
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) )
5 1 2 3 nmoxr
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* )
6 nltpnft
 |-  ( ( N ` T ) e. RR* -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) )
7 5 6 syl
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) )
8 7 necon2abid
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) < +oo <-> ( N ` T ) =/= +oo ) )
9 4 8 bitr4d
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) < +oo ) )