| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoxr.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
nmoxr.2 |
|- Y = ( BaseSet ` W ) |
| 3 |
|
nmoxr.3 |
|- N = ( U normOpOLD W ) |
| 4 |
1 2 3
|
nmorepnf |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |
| 5 |
1 2 3
|
nmoxr |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |
| 6 |
|
nltpnft |
|- ( ( N ` T ) e. RR* -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) ) |
| 7 |
5 6
|
syl |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) ) |
| 8 |
7
|
necon2abid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) < +oo <-> ( N ` T ) =/= +oo ) ) |
| 9 |
4 8
|
bitr4d |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) < +oo ) ) |