Step |
Hyp |
Ref |
Expression |
1 |
|
nmotri.1 |
|- N = ( S normOp T ) |
2 |
|
nmotri.p |
|- .+ = ( +g ` T ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
5 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
6 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
7 |
|
nghmrcl1 |
|- ( F e. ( S NGHom T ) -> S e. NrmGrp ) |
8 |
7
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> S e. NrmGrp ) |
9 |
|
nghmrcl2 |
|- ( F e. ( S NGHom T ) -> T e. NrmGrp ) |
10 |
9
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> T e. NrmGrp ) |
11 |
|
id |
|- ( T e. Abel -> T e. Abel ) |
12 |
|
nghmghm |
|- ( F e. ( S NGHom T ) -> F e. ( S GrpHom T ) ) |
13 |
|
nghmghm |
|- ( G e. ( S NGHom T ) -> G e. ( S GrpHom T ) ) |
14 |
2
|
ghmplusg |
|- ( ( T e. Abel /\ F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( F oF .+ G ) e. ( S GrpHom T ) ) |
15 |
11 12 13 14
|
syl3an |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( F oF .+ G ) e. ( S GrpHom T ) ) |
16 |
1
|
nghmcl |
|- ( F e. ( S NGHom T ) -> ( N ` F ) e. RR ) |
17 |
16
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( N ` F ) e. RR ) |
18 |
1
|
nghmcl |
|- ( G e. ( S NGHom T ) -> ( N ` G ) e. RR ) |
19 |
18
|
3ad2ant3 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( N ` G ) e. RR ) |
20 |
17 19
|
readdcld |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( ( N ` F ) + ( N ` G ) ) e. RR ) |
21 |
12
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> F e. ( S GrpHom T ) ) |
22 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
23 |
8 10 21 22
|
syl3anc |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> 0 <_ ( N ` F ) ) |
24 |
13
|
3ad2ant3 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> G e. ( S GrpHom T ) ) |
25 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ G e. ( S GrpHom T ) ) -> 0 <_ ( N ` G ) ) |
26 |
8 10 24 25
|
syl3anc |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> 0 <_ ( N ` G ) ) |
27 |
17 19 23 26
|
addge0d |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> 0 <_ ( ( N ` F ) + ( N ` G ) ) ) |
28 |
10
|
adantr |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> T e. NrmGrp ) |
29 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
30 |
28 29
|
syl |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> T e. Grp ) |
31 |
21
|
adantr |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( S GrpHom T ) ) |
32 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
33 |
3 32
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
34 |
31 33
|
syl |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
35 |
|
simprl |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> x e. ( Base ` S ) ) |
36 |
34 35
|
ffvelrnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( F ` x ) e. ( Base ` T ) ) |
37 |
24
|
adantr |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G e. ( S GrpHom T ) ) |
38 |
3 32
|
ghmf |
|- ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
39 |
37 38
|
syl |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
40 |
39 35
|
ffvelrnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( G ` x ) e. ( Base ` T ) ) |
41 |
32 2
|
grpcl |
|- ( ( T e. Grp /\ ( F ` x ) e. ( Base ` T ) /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( F ` x ) .+ ( G ` x ) ) e. ( Base ` T ) ) |
42 |
30 36 40 41
|
syl3anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( F ` x ) .+ ( G ` x ) ) e. ( Base ` T ) ) |
43 |
32 5
|
nmcl |
|- ( ( T e. NrmGrp /\ ( ( F ` x ) .+ ( G ` x ) ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) e. RR ) |
44 |
28 42 43
|
syl2anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) e. RR ) |
45 |
32 5
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` x ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` x ) ) e. RR ) |
46 |
28 36 45
|
syl2anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( F ` x ) ) e. RR ) |
47 |
32 5
|
nmcl |
|- ( ( T e. NrmGrp /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
48 |
28 40 47
|
syl2anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
49 |
46 48
|
readdcld |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( norm ` T ) ` ( F ` x ) ) + ( ( norm ` T ) ` ( G ` x ) ) ) e. RR ) |
50 |
17
|
adantr |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( N ` F ) e. RR ) |
51 |
|
simpl |
|- ( ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) -> x e. ( Base ` S ) ) |
52 |
3 4
|
nmcl |
|- ( ( S e. NrmGrp /\ x e. ( Base ` S ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
53 |
8 51 52
|
syl2an |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
54 |
50 53
|
remulcld |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) e. RR ) |
55 |
19
|
adantr |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( N ` G ) e. RR ) |
56 |
55 53
|
remulcld |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) e. RR ) |
57 |
54 56
|
readdcld |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) + ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) e. RR ) |
58 |
32 5 2
|
nmtri |
|- ( ( T e. NrmGrp /\ ( F ` x ) e. ( Base ` T ) /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) <_ ( ( ( norm ` T ) ` ( F ` x ) ) + ( ( norm ` T ) ` ( G ` x ) ) ) ) |
59 |
28 36 40 58
|
syl3anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) <_ ( ( ( norm ` T ) ` ( F ` x ) ) + ( ( norm ` T ) ` ( G ` x ) ) ) ) |
60 |
|
simpl2 |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( S NGHom T ) ) |
61 |
1 3 4 5
|
nmoi |
|- ( ( F e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` x ) ) <_ ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) ) |
62 |
60 35 61
|
syl2anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( F ` x ) ) <_ ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) ) |
63 |
|
simpl3 |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G e. ( S NGHom T ) ) |
64 |
1 3 4 5
|
nmoi |
|- ( ( G e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) |
65 |
63 35 64
|
syl2anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) |
66 |
46 48 54 56 62 65
|
le2addd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( norm ` T ) ` ( F ` x ) ) + ( ( norm ` T ) ` ( G ` x ) ) ) <_ ( ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) + ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
67 |
44 49 57 59 66
|
letrd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) <_ ( ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) + ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
68 |
34
|
ffnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F Fn ( Base ` S ) ) |
69 |
39
|
ffnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G Fn ( Base ` S ) ) |
70 |
|
fvexd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( Base ` S ) e. _V ) |
71 |
|
fnfvof |
|- ( ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) /\ ( ( Base ` S ) e. _V /\ x e. ( Base ` S ) ) ) -> ( ( F oF .+ G ) ` x ) = ( ( F ` x ) .+ ( G ` x ) ) ) |
72 |
68 69 70 35 71
|
syl22anc |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( F oF .+ G ) ` x ) = ( ( F ` x ) .+ ( G ` x ) ) ) |
73 |
72
|
fveq2d |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( F oF .+ G ) ` x ) ) = ( ( norm ` T ) ` ( ( F ` x ) .+ ( G ` x ) ) ) ) |
74 |
50
|
recnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( N ` F ) e. CC ) |
75 |
55
|
recnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( N ` G ) e. CC ) |
76 |
53
|
recnd |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. CC ) |
77 |
74 75 76
|
adddird |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( N ` F ) + ( N ` G ) ) x. ( ( norm ` S ) ` x ) ) = ( ( ( N ` F ) x. ( ( norm ` S ) ` x ) ) + ( ( N ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
78 |
67 73 77
|
3brtr4d |
|- ( ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( ( F oF .+ G ) ` x ) ) <_ ( ( ( N ` F ) + ( N ` G ) ) x. ( ( norm ` S ) ` x ) ) ) |
79 |
1 3 4 5 6 8 10 15 20 27 78
|
nmolb2d |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( N ` ( F oF .+ G ) ) <_ ( ( N ` F ) + ( N ` G ) ) ) |