Metamath Proof Explorer


Theorem nmoub2i

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1
|- X = ( BaseSet ` U )
nmoubi.y
|- Y = ( BaseSet ` W )
nmoubi.l
|- L = ( normCV ` U )
nmoubi.m
|- M = ( normCV ` W )
nmoubi.3
|- N = ( U normOpOLD W )
nmoubi.u
|- U e. NrmCVec
nmoubi.w
|- W e. NrmCVec
Assertion nmoub2i
|- ( ( T : X --> Y /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( L ` x ) ) ) -> ( N ` T ) <_ A )

Proof

Step Hyp Ref Expression
1 nmoubi.1
 |-  X = ( BaseSet ` U )
2 nmoubi.y
 |-  Y = ( BaseSet ` W )
3 nmoubi.l
 |-  L = ( normCV ` U )
4 nmoubi.m
 |-  M = ( normCV ` W )
5 nmoubi.3
 |-  N = ( U normOpOLD W )
6 nmoubi.u
 |-  U e. NrmCVec
7 nmoubi.w
 |-  W e. NrmCVec
8 1 2 3 4 5 6 7 nmoub3i
 |-  ( ( T : X --> Y /\ A e. RR /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( L ` x ) ) ) -> ( N ` T ) <_ ( abs ` A ) )
9 8 3adant2r
 |-  ( ( T : X --> Y /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( L ` x ) ) ) -> ( N ` T ) <_ ( abs ` A ) )
10 absid
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A )
11 10 3ad2ant2
 |-  ( ( T : X --> Y /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( L ` x ) ) ) -> ( abs ` A ) = A )
12 9 11 breqtrd
 |-  ( ( T : X --> Y /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( L ` x ) ) ) -> ( N ` T ) <_ A )