Metamath Proof Explorer


Theorem nmoxr

Description: The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1
|- X = ( BaseSet ` U )
nmoxr.2
|- Y = ( BaseSet ` W )
nmoxr.3
|- N = ( U normOpOLD W )
Assertion nmoxr
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* )

Proof

Step Hyp Ref Expression
1 nmoxr.1
 |-  X = ( BaseSet ` U )
2 nmoxr.2
 |-  Y = ( BaseSet ` W )
3 nmoxr.3
 |-  N = ( U normOpOLD W )
4 eqid
 |-  ( normCV ` U ) = ( normCV ` U )
5 eqid
 |-  ( normCV ` W ) = ( normCV ` W )
6 1 2 4 5 3 nmooval
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) )
7 2 5 nmosetre
 |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR )
8 ressxr
 |-  RR C_ RR*
9 7 8 sstrdi
 |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* )
10 supxrcl
 |-  ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* )
11 9 10 syl
 |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* )
12 11 3adant1
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* )
13 6 12 eqeltrd
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* )