| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoxr.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nmoxr.2 |  |-  Y = ( BaseSet ` W ) | 
						
							| 3 |  | nmoxr.3 |  |-  N = ( U normOpOLD W ) | 
						
							| 4 |  | eqid |  |-  ( normCV ` U ) = ( normCV ` U ) | 
						
							| 5 |  | eqid |  |-  ( normCV ` W ) = ( normCV ` W ) | 
						
							| 6 | 1 2 4 5 3 | nmooval |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) ) | 
						
							| 7 | 2 5 | nmosetre |  |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR ) | 
						
							| 8 |  | ressxr |  |-  RR C_ RR* | 
						
							| 9 | 7 8 | sstrdi |  |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* ) | 
						
							| 10 |  | supxrcl |  |-  ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) | 
						
							| 12 | 11 | 3adant1 |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) | 
						
							| 13 | 6 12 | eqeltrd |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |